headerpos: 9507
 
 
  Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Publisher
Journal Information
» Abstracting/Indexing
List of Issues
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
Vol. 14, Issue 4
Vol. 14, Issue 3
Vol. 14, Issue 2
Vol. 14, Issue 1
» 2007
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other Journals
» Staff

Conceptual design framework supported by dimensional analysis and System Modelling Language; 303–316

(Full article in PDF format) doi: 10.3176/eng.2008.4.02


Authors

François Christophe, Raivo Sell, Eric Coatanéa

Abstract

Early design is widely accepted inside the engineering design community as a crucial design stage. This is due to the fact that decisions taken at this stage constrain heavily the final performance of products. This article presents a design framework for the early design stage of mechatronic products. This framework provides a scientifically coherent methodology for refinement, analysis, modelling, comparison and evaluation of design solutions at early stage of the design process. A System Modelling Language (SysML) is proposed as a powerful modelling language properly adapted to mechatronic requirements. In addition, the article proposes to combine SysML with dimensional analysis and qualitative physics in order to provide a design tool able to carry out also early simulations, comparisons and evaluations.

Keywords

system modelling, conceptual design, dimensional analysis, evaluation, unified design methodology.

References

  1. Lotter , B. Manufacturing Assembly Handbook. Butterworths , Boston , 1986.

  2. Hsu , W. and Woon , I. M. Y. Current research in the conceptual design of mechanical products. Computer-Aided Design , 1998 , 30 , 377–389.
doi:10.1016/S0010-4485(97)00101-2

  3. Blessing , J. Consolidation of design research: the issue of design theory. In International Conference on Design. Dubrovnik , 2006.

  4. Sell , R. Model Based Mechatronic Systems Modeling Methodology in Conceptual Design Stage. TUT Press , Tallinn , 2007.

  5. Systems Engineering Handbook. INCOSE-TP-2003-016-02 , Version 2a , Technical Board of International Council on Systems Engineering (INCOSE) , 2004; http://www.incose.org

  6. Booch , G. , Rumbaugh , J. and Jacobson , I. The Unified Modeling Language User Guide. Addison Wesley , MA , 1999.
doi:10.1007/3-540-46852-8_1

  7. UML for Systems Engineering RFP. OMG document ad/03-03-41 , 2003; http://syseng.omg.org/

  8. UML Profile for Schedulability , Performance , and Time Specification. OMG document ptc/2003-03-2 , 2003; http://syseng.omg.org/

  9. Kukkala , P. , Riihimäki , J. , Hännikäinen , M. , Hämäläinen , T. D. and Kronlöf , K. UML 2.0 profile for embedded system design. In Proc. Design , Automation and Test in Europe Conference. Munich , 2005 , 710–715.

10. UML 2.0 Testing Profile Specification , version 1.0. OMG document formal/05-07-07 , 2005; http://syseng.omg.org/

11. Rajan , S. P. , Hasegawa , T. , Shoji , M. , Zhu , Q. and Nakata , T. UML profile for SoC RFC. DAC 2005 Workshop , UML-SoC 2005 UML for SoC Design Conference. Anaheim , 2005.

12. Gurd , A. Using UMLTM 2.0 to solve systems engineering problems. Telelogic. 2003; http://whitepapers.zdnet.co.uk

13. Berkenkötter , K. , Bisanz , S. , Hannemann , U. and Peleska , J. HybridUML profile for UML 2.0. Int. J. Software Tools Technol. Transfer , 2006 , 8 , 1–36.
doi:10.1007/s10009-005-0199-4

14. System Modeling Language (SysML) Specification. Version 1.0 Draft. OMG document ad/2006-03-01 , 2006; http://www.sysml.org

15. Sell , R. and Tamre , M. Integration of V-model and SysML for advanced mechatronics system design. In Proc. Research and Education on Mechatronics Conference REM05. Annecy , 2005 , 276–280.

16. Rzevski , G. On conceptual design of intelligent mechatronic system. Mechatronics , 2003 , 13 , 1029–1044.
doi:10.1016/S0957-4158(03)00041-2

17. Granda , J. J. The role of bond graph modeling and simulation in mechatronics systems. An integrated software tool: CAMP-G , MATLAB–SIMULINK. Mechatronics , 2002 , 12 ,1271–1295.
doi:10.1016/S0957-4158(02)00029-6

18. Seo , K. , Fan , Z. , Hu , J. , Goodman , E. D. and Rosenberg , R. C. Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming. Mechatronics , 2003 , 13 , 851–885.
doi:10.1016/S0957-4158(03)00006-0

19. Sonin , A. A. The Physical Basis of Dimensional Analysis , 2nd ed. Department of Mechanical Engineering , MIT , Cambridge , MA , 2001.

20. Bhashkar , R. and Nigam , A. Qualitative physics using dimensional analysis. Artificial Intelligence , 1990 , 45 , 73–111.
doi:10.1016/0004-3702(90)90038-2

21. Coatanéa , E. Conceptual Design of Life Cycle Design: A Modeling and Evaluation Method Based on Analogies and Dimensionless Numbers. Helsinki University of Technology , Espoo , 2005.

22. Butterfield , R. Dimensional analysis revisited. J. Mech. Eng. Sci. , 2001 , 215 , 1365–1375.

23. Matz , W. Le principe de similitude en génie chimique. Dunod , Paris , 1959.

24. Gero , J. S. and Kannengiesser , U. The situated function-behaviour-structure framework. Design Study , 2004 , 25 , 1–25.
doi:10.1016/j.destud.2003.10.010
 
Back

Current Issue: Vol. 19, Issue 4, 2013





Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December