headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

A note on Lie superalgebras; pp. 332–337

(Full article in PDF format) doi: 10.3176/proc.2010.4.12


Authors

Rein-Karl Loide, Pavel Suurvarik

Abstract

We treat the possible Lie superalgebras where in addition to Poincaré generators there are n supergenerators. These superalgebras are determined with the help of relativistic wave equations. It is shown that structure constants are connected with the matrices of first-order relativistic wave equations. Some of these Lie superalgebras may be interesting from mathematical point of view.

Keywords

Lie superalgebras, supersymmetry, relativistic wave equations.

References

  1. Kac , V. G. Lie superalgebras. Adv. Math. , 1977 , 26 , 8–96.
doi:10.1016/0001-8708(77)90017-2

  2. Cornwell , J. F. Group Theory in Physics. Volume III. Supersymmetries and Infinite-Dimensional Algebras. Elsevier Academic Press , London , 2005.

  3. Frappat , L. , Sorba , P. , and Sciarrino , A. Dictionary on Lie Superalgebras. hep-th/9607161v1.

  4. Colfand , Y. A. and Likhtman , E. P. Extension of the algebra of Poincaré group generators and violation of P invariance. JETP Lett. , 1971 , 13 , 323.

  5. Wess , J. and Zumino , B. Supergauge transformations in four dimensions. Nucl. Phys. B , 1974 , 70 , 39–50.
doi:10.1016/0550-3213(74)90355-1

  6. Terning , J. Modern Supersymmetry. Dynamics and Duality. Oxford University Press , Oxford , 2007.

  7. Weinberg , S. The Quantum Theory of Fields. Volume III. Supersymmetry. Cambridge University Press , Cambridge , 2000.

  8. Martin , S. P. A Supersymmetry primer. In Perspctives on Supersymmetry (Kane , G. L. , ed.) , pp. 1–98 , World Scienific , Singapore , 1998. hep-ph/9709356.

  9. Coleman , S. and Mandula , J. All possible symmetries of the S-matrix. Phys. Rev. , 1967 , 159 , 1251–1256.
doi:10.1103/PhysRev.159.1251

10. Haag , R. , Lopuszanski , J. T. , and Sohnius , M. All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B , 1975 , 88 , 257–274.
doi:10.1016/0550-3213(75)90279-5

11. Salam , A. and Strathdee , J. A. Unitary representations of super-gauge symmetries. Nucl. Phys. B , 1974 , 80 , 499–505.
doi:10.1016/0550-3213(74)90500-8

12. Strathdee , J. Extended Poincaré supersymmetry. Int. J. Mod. Phys. , 1987 , A2 , 273.

13. Bagger , J. and Lambert , N. Modeling multiple M2’S. Phys. Rev. , 2007 , D75 , 045020. arXiv:hep-th/0611108.

14. Bagger , J. and Lambert , N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. , 2008 , D77 , 065008. arXiv:0711.0955 [hep-th].

15. De Medeiros , P. , Figueroa-O’Farrill , J. , Méndez-Escobar , E. , and Ritter , P. On the Lie-algebraic origin of metric 3-algebras. Commun. Math. Phys. , 2009 , 290(3) , 871–902. arXiv:0809.1086[hep-th].

16. Ainsaar , A. A Supersymmetry of Bosons. Preprint FI-38 , Tartu , 1975.

17. Loide , R.-K. Equations for a vector-bispinor. J. Phys. A: Math. Gen. , 1984 , 17 , 2535–2550.
doi:10.1088/0305-4470/17/12/024
 
Back

Current Issue: Vol. 67, Issue 4 in Press, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December