|
References
1. Garbaczewski , P. and Karwowski , W. Impenetrable barriers and canonical quantization. Am. J. Phys. , 2004 , 72 , 924–933. doi:10.1119/1.1688784 2. Isham , C. Topological and global aspects of quantum theory. In Relativity , Groups and Topology: No. 2: Summer School Proceedings (Les Houches Summer School Proceedings) (DeWitt , B. S. and Stora , R. , eds). Elsevier , 1984 , 1059–1290. 3. Bonneau , G. , Faraut , J. , and Valent , G. Self-adjoint extensions of operators and the teaching of quantum mechanics. Am. J. Phys. , 2001 , 69 , 322–331. doi:10.1119/1.1328351 4. Dias , N. C. and Prata , J. N. Wigner functions with boundaries. J. Math. Phys. , 2002 , 43 , 4602–4627. doi:10.1063/1.1504885 5. Akhiezer , N. and Glazman , I. Theory of Linear Operators in Hilbert Space. Pitman , Boston , 1981. 6. Posilicano , A. Self-adjoint extensions of restrictions. OaM , 2008 , 2 , 483–506. 7. Albeverio , S. , Gesztesy , F. , Högh-Krohn , R. , and Holden , H. Solvable Models in Quantum Mechanics , 2nd ed. AMS , Chelsea , 2005. 8. Posilicano , P. A Krein-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. , 2001 , 183 , 109–147. doi:10.1006/jfan.2000.3730 9. Berezin , F. and Fadeev , L. Remark on the Schrödinger equation with singular potential. Dokl. Akad. Nauk. SSSR , 1961 , 137 , 1011–1014. 10. Blanchard , Ph. , Figari , R. , and Mantile , A. Point interaction Hamiltonians in bounded domains. J. Math. Phys. , 2007 , 48 , 082108. doi:10.1063/1.2770672 11. Posilicano , A. The Schrödinger equation with a moving point interaction in three dimensions. Proc. Amer. Math. Soc. , 2007 , 135 , 1785–1793. doi:10.1090/S0002-9939-06-08814-9 12. Kanwal , R. P. Generalized Functions: Theory and Technique , 2nd ed. Birkhäuser , Boston , 1998. 13. Dias , N. C. , Posilicano , A. , and Prata , J. N. Self-adjoint , globally defined Hamiltonian operators for systems with boundaries. Physics Archives: arXiv:0707.0948 , 2007. 14. Voronov , B. , Gitman , D. , and Tyutin , I. Self-adjoint differential operators associated with self-adjoint differential expressions. Physics Archives: arXiv:quant-ph/0603187 , 2006.
|