headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

A global, dynamical formulation of quantum confined systems; pp. 290–293

(Full article in PDF format) doi: 10.3176/proc.2010.4.06


Authors

Nuno C. Dias, João N. Prata

Abstract

A brief review of some recent results on the global self-adjoint formulation of systems with boundaries is presented. We concentrate on the 1-dimensional case and obtain a dynamical formulation of quantum confinement.

Keywords

self-adjoint extensions, boundary interactions, dynamical confinement.

References

  1. Garbaczewski , P. and Karwowski , W. Impenetrable barriers and canonical quantization. Am. J. Phys. , 2004 , 72 , 924–933.
doi:10.1119/1.1688784

  2. Isham , C. Topological and global aspects of quantum theory. In Relativity , Groups and Topology: No. 2: Summer School Proceedings (Les Houches Summer School Proceedings) (DeWitt , B. S. and Stora , R. , eds). Elsevier , 1984 , 1059–1290.

  3. Bonneau , G. , Faraut , J. , and Valent , G. Self-adjoint extensions of operators and the teaching of quantum mechanics. Am. J. Phys. , 2001 , 69 , 322–331.
doi:10.1119/1.1328351

  4. Dias , N. C. and Prata , J. N. Wigner functions with boundaries. J. Math. Phys. , 2002 , 43 , 4602–4627.
doi:10.1063/1.1504885

  5. Akhiezer , N. and Glazman , I. Theory of Linear Operators in Hilbert Space. Pitman , Boston , 1981.

  6. Posilicano , A. Self-adjoint extensions of restrictions. OaM , 2008 , 2 , 483–506.

  7. Albeverio , S. , Gesztesy , F. , Högh-Krohn , R. , and Holden , H. Solvable Models in Quantum Mechanics , 2nd ed. AMS , Chelsea , 2005.

  8. Posilicano , P. A Krein-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. , 2001 , 183 , 109–147.
doi:10.1006/jfan.2000.3730

  9. Berezin , F. and Fadeev , L. Remark on the Schrödinger equation with singular potential. Dokl. Akad. Nauk. SSSR , 1961 , 137 , 1011–1014.

10. Blanchard , Ph. , Figari , R. , and Mantile , A. Point interaction Hamiltonians in bounded domains. J. Math. Phys. , 2007 , 48 , 082108.
doi:10.1063/1.2770672

11. Posilicano , A. The Schrödinger equation with a moving point interaction in three dimensions. Proc. Amer. Math. Soc. , 2007 , 135 , 1785–1793.
doi:10.1090/S0002-9939-06-08814-9

12. Kanwal , R. P. Generalized Functions: Theory and Technique , 2nd ed. Birkhäuser , Boston , 1998.

13. Dias , N. C. , Posilicano , A. , and Prata , J. N. Self-adjoint , globally defined Hamiltonian operators for systems with boundaries. Physics Archives: arXiv:0707.0948 , 2007.

14. Voronov , B. , Gitman , D. , and Tyutin , I. Self-adjoint differential operators associated with self-adjoint differential expressions. Physics Archives: arXiv:quant-ph/0603187 , 2006.
 
Back

Current Issue: Vol. 67, Issue 4 in Press, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December