headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
Vol. 59, Issue 4
Vol. 59, Issue 3
Vol. 59, Issue 2
Vol. 59, Issue 1
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Pure spinor superfields, with application to D = 3 conformal models; pp. 280–289

(Full article in PDF format) doi: 10.3176/proc.2010.4.05


Authors

Martin Cederwall

Abstract

I review and discuss the construction of supersymmetry multiplets and manifestly supersymmetric Batalin–Vilkovisky actions by using pure spinors, with emphasis on models with maximal supersymmetry. The special cases of D = 3, N = 8 (Bagger–Lambert–Gustavsson) and N = 6 (Aharony–Bergman–Jafferis–Maldacena) conformal models are treated in detail.

Keywords

extended supersymmetry, superfields, pure spinors, conformal symmetry.

References

  1. Nilsson , B. E. W. Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang–Mills theory. Class. Quantum Grav. , 1986 , 3 , L41.
doi:10.1088/0264-9381/3/2/007

  2. Howe , P. S. Pure spinor lines in superspace and ten-dimensional supersymmetric theories. Phys. Lett. B , 1991 , 258 , 141–144.
doi:10.1016/0370-2693(91)91221-G

  3. Howe , P. S. Pure spinors , function superspaces and supergravity theories in ten and eleven dimensions. Phys. Lett. B , 1991 , 273 , 90–94.
doi:10.1016/0370-2693(91)90558-8

  4. Berkovits , N. Super-Poincaré covariant quantization of the superstring. J. High Energy Phys. , 2000 , 04 , 018; arXiv:hep-th/0001035.

  5. Berkovits , N. Covariant quantization of the superparticle using pure spinors. J. High Energy Phys. , 2001 , 09 , 016; arXiv:hep-th/0105050.

  6. Berkovits , N. ICTP lectures on covariant quantization of the superstring. Proceedings of the ICTP Spring School on Superstrings and Related Matters , Trieste , Italy , 2002 , arXiv:hep-th/0209059.

  7. Berkovits , N. Pure spinor formalism as an N = 2 topological string. J. High Energy Phys. , 2005 , 10 , 089; arXiv:hep-th/0509120.

  8. Cederwall , M. , Nilsson , B. E. W. , and Tsimpis , D. The structure of maximally supersymmetric super-Yang–Mills theory constraining higher order corrections. J. High Energy Phys. , 2001 , 06 , 034; arXiv:hep-th/0102009.

  9. Cederwall , M. , Nilsson , B. E. W. , and Tsimpis , D. D = 10 super-Yang–Mills at O¢2). J. High Energy Phys. , 2001 , 07 , 042; arXiv:hep-th/0104236.

10. Cederwall , M. , Nilsson , B. E. W. , and Tsimpis , D. Spinorial cohomology and maximally supersymmetric theories. J. High Energy Phys. , 2002 , 02 , 009; arXiv:hep-th/0110069.

11. Cederwall , M. Superspace methods in string theory , supergravity and gauge theory. Lectures at the XXXVII Winter School in Theoretical Physics “New Developments in Fundamental Interactions Theories” , Karpacz , Poland , Feb. 6–15 , 2001 , arXiv:hep-th/0105176.

12. Movshev , M. and Schwarz , A. On maximally supersymmetric Yang–Mills theories. Nucl. Phys. B , 2004 , 681 , 324–350; arXiv:hep-th/0311132.
doi:10.1016/j.nuclphysb.2003.12.033

13. Cederwall , M. and Nilsson , B. E. W. Pure spinors and D = 6 super-Yang–Mills. arXiv:0801.1428 , 2008.

14. Cederwall , M. , Gran , U. , Nielsen , M. , and Nilsson , B. E. W. Manifestly supersymmetric M-theory. J. High Energy Phys. , 2000 , 10 , 041; arXiv:hep-th/0007035.

15. Cederwall , M. , Gran , U. , Nielsen , M. , and Nilsson , B. E. W. Generalised 11-dimensional supergravity. In Quantization , Gauge Theory and Strings. Proceedings of the International Conference Dedicated to the Memory of Professor Efim Fradkin , Vol.~1 (Semikhatov , A. , Vasiliev , M. , and Zaikin , V. , eds). Scientific World , Moscow , 2001 , 94–105. arXiv:hep-th/0010042 , 2000.

16. Cederwall , M. , Gran , U. , Nilsson , B. E. W. , and Tsimpis , D. Supersymmetric corrections to eleven-dimensional supergravity. J. High Energy Phys. , 2005 , 05 , 052; arXiv:hep-th/0409107.

17. Howe , P. S. and Tsimpis , D. On higher order corrections in M theory. J. High Energy Phys. , 2003 , 09 , 038; arXiv:hep-th/0305129.

18. Berkovits , N. and Nekrasov , N. The character of pure spinors. Lett. Math. Phys. , 2005 , 74 , 75–109; arXiv:hep-th/0503075.
doi:10.1007/s11005-005-0009-7

19. Marnelius , R. and Ögren , M. New symmetric inner products for physical states in BRST quantization. Nucl. Phys. B , 1991 , 351 , 474–490.
doi:10.1016/0550-3213(91)90098-I

20. Bagger , J. and Lambert , N. Modeling multiple M2’s. Phys. Rev. D , 2007 , 75 , 045020; arXiv:hep-th/0611108.
doi:10.1103/PhysRevD.75.045020

21. Gustavsson , A. Algebraic structures on parallel M2 branes. Nucl. Phys. B , 2009 , 811 , 66–76; arXiv:0709.1260.

22. Bagger , J. and Lambert , N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D , 2008 , 77 , 065008; arXiv:0711.0955.

23. Bagger , J. and Lambert , N. Comments on multiple M2-branes. J. High Energy Phys. , 2008 , 02 , 105; arXiv:0712.3738.

24. Papadopoulos , G. M2-branes , 3-Lie algebras and Plücker relations. J. High Energy Phys. , 2008 , 05 , 054; arXiv:0804.2662.

25. Gauntlett , J. P. and Gutowski , J. B. Constraining maximally supersymmetric membrane actions. arXiv:0804.3078 , 2008.

26. Lambert , N. and Tong , D. Membranes on an orbifold. Phys. Rev. Lett. , 2008 , 101 , 041602; arXiv:0804.1114.

27. Distler , J. , Mukhi , S. , Papageorgakis , C. , and van Raamsdonk , M. M2-branes on M-folds. J. High Energy Phys. , 2008 , 05 , 038; arXiv:0804.1256.

28. Ho , P.-M. and Matsuo , Y. M5 from M2. J. High Energy Phys. , 2008 , 06 , 105; arXiv:0804.3629.

29. Bandos , I. and Townsend , P. K. Light-cone M5 and multiple M2-branes. Class. Quantum Grav. , 2008 , 25 , 245003; arXiv:0806.4777

30. Bandos , I. and Townsend , P. K. SDiff gauge theory and the M2 condensate. J. High Energy Phys. , 2009 , 02 , 013; arXiv:0808.1583.

31. Gran , U. , Nilsson , B. E. W. , and Petersson , C. On relating multiple M2 and D2-branes. J. High Energy Phys. , 2008 , 10 , 067; arXiv:0804.1784.

32. Gomis , J. , Milanesi , G. , and Russo , J. G. Bagger–Lambert theory for general Lie algebras. J. High Energy Phys. , 2008 , 06 , 075; arXiv:0805.1012.

33. Benvenuti , S. , Rodriguez-Gomez , D. , Tonni , E. , and Verlinde , H. N = 8 superconformal gauge theories and M2 branes. J. High Energy Phys. , 2009 , 01 , 071; arXiv:0805.1087.

34. Ho , P.-M. , Imamura , Y. , and Matsuo , Y. M2 to D2 revisited. J. High Energy Phys. , 2008 , 07 , 003; arXiv:0805.1202.

35. Aharony , O. , Bergman , O. , Jafferis , D. L. , and Maldacena , J. N = 6 superconformal Chern–Simons-matter theories , M2-branes and their gravity duals. J. High Energy Phys. , 2008 , 10 , 091; arXiv:0806.1218.

36. Gaiotto , D. and Witten , E. Janus configurations , Chern–Simons couplings , and the theta-angle in N = 4 super-Yang–Mills theory. arXiv:0804.2907 , 2008.

37. Hosomichi , K. , Lee , K.-M. , Lee , S. , Lee , S. , and Park , J. N = 4 superconformal Chern–Simons theories with hyper and twisted hyper multiplets. J. High Energy Phys. , 2008 , 07 , 091; arXiv:0805.3662.

38. Benna , M. , Klebanov , I. , Klose , T. , and Smedbäck , M. Superconformal Chern–Simons theories and AdS4/CFT3 correspondence. J. High Energy Phys. , 2008 , 09 , 072; arXiv:0806.1519.

39. Nishioka , T. and Takayanagi , T. On type IIA Penrose limit and N = 6 Chern–Simons theories. J. High Energy Phys. , 2008 , 08 , 001; arXiv:0806.3391.

40. Minahan , J. and Zarembo , K. The Bethe Ansatz for superconformal Chern–Simons. J. High Energy Phys. , 2008 , 09 , 040; arXiv:0806.3951.

41. Hosomichi , K. , Lee , K.-M. , Lee , S. , Lee , S. , and Park , J. N = 5 ,6 superconformal Chern–Simons theories and M2-branes on orbifolds. J. High Energy Phys. , 2008 , 09 , 002; arXiv:0806.4977.

42. Bagger , J. and Lambert , N. Three-algebras and N = 6 Chern–Simons gauge theories. Phys. Lett. D , 2009 , 79 , 025002; arXiv:0807.0163.

43. Schnabl , M. and Tachikawa , Y. Classification of N = 6 superconformal theories of ABJM type. arXiv:0807.1102 , 2008.

44. Nilsson , B. E. W. and Palmkvist , J. Superconformal M2-branes and generalized Jordan triple systems. Class. Quantum Grav. , 2009 , 26 , 075007; arXiv:0807.5134.

45. Cederwall , M. N = 8 superfield formulation of the Bagger–Lambert–Gustavsson model. J. High Energy Phys. , 2008 , 09 , 116; arXiv:0808.3242.

46. Bandos , I. NB BLG model in N = 8 superfields. Phys. Lett. B , 2008 , 669 , 193–195; arXiv:0808.3562.

47. Mauri , A. and Petkou , A. C. An N = 1 superfield action for M2 branes. Phys. Lett. B , 2008 , 666 , 527–532; arXiv:0806.2270.

48. Cherkis , S. and Sämann , C. Multiple M2-branes and generalized 3-Lie algebras. Phys. Lett. D , 2008 , 78 , 066019; arXiv:0807.0808.

49. Cederwall , M. Superfield actions for N = 8 and N = 6 conformal theories in three dimensions. J. High Energy Phys. , 2008 , 10 , 070; arXiv:0809.0318.

50. Fré , P. and Grassi , P. A. Pure spinor formalism for OSp(N|4) backgrounds. arXiv:0807.0044 , 2008.

51. Gustavsson , A. One-loop corrections to Bagger–Lambert theory. Nucl. Phys. B , 2009 , 807 , 315–333; arXiv:0805.4443.

52. Bedford , J. and Berman , D. A note on quantum aspects of multiple membranes. Phys. Lett. B , 2008 , 668 , 67–71; arXiv:0806.4900.

53. Berkovits , N. and Nekrasov , N. Multiloop superstring amplitudes from non-minimal pure spinor formalism. J. High Energy Phys. , 2006 , 12 , 029; arXiv:hep-th/0609012.

54. Grassi , P. A. and Vanhove , P. Higher-loop amplitudes in the non-minimal pure spinor formalism. J. High Energy Phys. , 2009 , 05 , 089; arXiv:0903.3903.
 
Back

Current Issue: Vol. 68, Issue 2, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December