headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
Vol. 30, Issue 4
Vol. 30, Issue 3
Vol. 30, Issue 2S
Vol. 30, Issue 2
Vol. 30, Issue 1
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

STUDY ON ULTRASONIC EXTRACTION OF KEROGEN FROM HUADIAN OIL SHALE BY SOLVENTS; pp. 491–500

(Full article in PDF format) doi: 10.3176/oil.2013.4.03


Authors

PINWEN ZHAO, YUJUAN ZHAO, CHANGJUN ZOU, TONG GU

Abstract

Ultrasonic extraction of kerogen derived by acid treatment of Huadian oil shale is performed using an organic solvent. The most effective solvent is the 60:40 (wt%) mixture of chloroform and carbon disulfide, and the suitable mass ratio of the demineralized oil shale to solvent is 1:20. The oil yield by ultrasonic extraction can reach 15.6% based on the demineralized oil shale, compared with a Fischer Assay oil content of 18.9%. The optimum operating parameters as determined by the orthogonal test are: 60 kHz ultrasonic frequency, 200 W ultrasonic power, 30 min extraction time, and 313 K extraction temperature. Through the gas chromatographic-mass spectrometric analysis, the most plentiful compounds in the extracts are low molecular weight alicyclic hydrocarbons, accounting for about 68.3% of total species. The physicochemical properties of the extracts indicated that these can act as an important complementary resource for the production of diesel after appropriate processing.

Keywords

oil shale, ultrasonic extraction, organic solvent.

References

  1. Yang , C. , Wang , Z. , Yang , Z. , Hollebone , B. , Brown , C. E. , Landriault , M. , Field­house , B. Chemical fingerprints of Alberta oil sands and related petroleum products. Environ. Forensics , 2011 , 12(2) , 173–188.
http://dx.doi.org/10.1080/15275922.2011.574312

  2. Betancourt-Torcat , A. , Elkamel , A. , Ricardez-Sandoval , L. A modeling study of the effect of carbon dioxide mitigation strategies , natural gas prices and steam consumption on the Canadian Oil Sands operations. Energy , 2012 , 45(1) , 1018–1033.
http://dx.doi.org/10.1016/j.energy.2012.06.043

  3. Schmidt , J. Technology selection for an oil shale deposit. International Con­ference on Oil Shale: “Recent Trends in Oil Shale” , 7–9 November 2006 , Amman , Jordan , paper No. rtos-A112.

  4. Külaots , I. , Goldfarb , J. L. , Suuberg , E. M. Characterization of Chinese , American and Estonian oil shale semicokes and their sorptive potential. Fuel , 2010 , 89(11) , 3300–3306.
http://dx.doi.org/10.1016/j.fuel.2010.05.025

  5. Al-Harahsheh , A. , Al-Harahsheh , M. , Al-Otoom , A. , Allawzi , M. Effect of demineralization of El-lajjun Jordanian oil shale on oil yield. Fuel Process. Technol. , 2009 , 90(6) , 818–824.
http://dx.doi.org/10.1016/j.fuproc.2009.03.005

  6. Wang , S. , Jiang , X. M. , Han , X. X. , Tong , J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy , 2012 , 42(1) , 224–232.
http://dx.doi.org/10.1016/j.energy.2012.03.066

  7. Hu , H. Q. , Zhang , J. , Guo , S. C. , Chen , G. H. Extraction of Huadian oil shale with water in sub- and supercritical states. Fuel , 1999 , 78(6) , 645–651.
http://dx.doi.org/10.1016/S0016-2361(98)00199-9

  8. Guo , S. C. , Hu , H. Q. , Wang , R. , Hedden , K. , Wilhelm , A. Experimental study on supercritical extraction of Huadian oil shales. Journal of Fuel Chemistry and Technology , 1985 , 13 , 289–296 (in Chinese).

  9. Sun , B. Z. , Wang , Q. , Jiang , Q. X. , Bai , J. R. , Sun , J. Determination of oil yield of Huadian oil shales by Fischer assay analysis. Journal of Northeast Dianli University , 2006 , 26 , 13–16 (in Chinese).

10. Jiang , X. M. , Han , X. X. , Cui , Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy , 2007 , 32(5) , 772–777.
http://dx.doi.org/10.1016/j.energy.2006.05.001

11. Ots , A. Oil Shale Fuel Combustion. Tallinn University of Technology , Tallinn , 2006.

12. Li , G. X. , Han , D. Y. , Cao , Z. B. , Yuan , M. M. , Zai , X. Y. Studies on Fushun shale oil furfural refining. Oil Shale , 2011 , 28(3) , 372–379.
http://dx.doi.org/10.3176/oil.2011.3.02

13. Wolfson , A. , Elmugrabi , Y. , Levi , R. , Tavor , D. , Wisniak , J. Green process for simultaneous extraction of oil shale and enrichment of ethanol. Oil Shale , 2011 , 28(4) , 516–527.
http://dx.doi.org/10.3176/oil.2011.4.05

14. Sultan Vayisoğlu , E. , Bülent Harput , O. , Johnson , B. R , Frere , B. , Bartle , K. D. Characterization of oil shales by extraction with N-methylpyrrolidone. Fuel , 1997 , 76(4) , 353–356.
http://dx.doi.org/10.1016/S0016-2361(94)00230-4

15. Blanco , C. G. , Prado , J. G. , Guillén , M. D. , Borrego , A. G. Preliminary results of extraction experiments in an oil shale. Org. Geochem. , 1992 , 18(3) , 313–316.
http://dx.doi.org/10.1016/0146-6380(92)90072-6

16. Deng , S. H. , Wang , Z. J. , Gu , Q. , Meng , F. Y. , Li , J. F. , Wang , H. Y. Extracting hydrocarbons from Huadian oil shale by sub-critical water. Fuel Process. Technol. , 2011 , 92(5) , 1062–1067.
http://dx.doi.org/10.1016/j.fuproc.2011.01.001

17. Allawzi , M. , Al-Otoom , A. , Allaboun , H. , Ajlouni , A. , Al Nseirat , F. CO2 super­critical fluid extraction of Jordanian oil shale utilizing different co-solvents. Fuel Process. Technol. , 2011 , 92(10) , 2016–2023.
http://dx.doi.org/10.1016/j.fuproc.2011.06.001

18. Torrente , M. C. , Galán , M. A. Extraction of kerogen from oil shale (Puertollano , Spain) with supercritical toluene and methanol mixtures. Ind. Eng. Chem. Res. , 2011 , 50(3) , 1730–1738.
http://dx.doi.org/10.1021/ie1004509

19. Zhao , D.-Z. , Sun , W.-W. , Sun , M.-Z. The separating of Inner Mongolian oil sand with ultrasound. Petrol. Sci. Technol. , 2011 , 29 , 2530–2535.
http://dx.doi.org/10.1080/10916460903057907

20. Wegener , D. C. , Maloney , D. R. , Zornes , D. R. , Reese , D. E. , Fraim , M. L. Methods and apparatus for enhancing well production using sonic energy. United States Patent , No. US 6186228B1 , 2001.

21. Song W. N. , Dong , Y. L. , Xue , L. M. , Ding , H. X. , Li , Z. , Zhou , G. J. Hydro­fluoric acid-based ultrasonic upgrading of oil shale and its structure charac­terization. Oil Shale , 2012 , 29(4) , 334–343.
http://dx.doi.org/10.3176/oil.2012.4.04

22. Aboulkas , A. , El Harfi , K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen. J. Fuel Chem. Technol. , 2009 , 37(6) , 659–667.
http://dx.doi.org/10.1016/S1872-5813(10)60013-8

23. Saxby , J. D. Chemical separation and characterization of kerogen from oil shale. In: Oil Shale (Yen , T. F. , Chilingarian , G. V. , eds.). Elsevier , Amsterdam , 1976 , 103–128.
http://dx.doi.org/10.1016/S0376-7361(08)70046-3

24. Wang , Z. M. , Tong , T. Y. , Zhang , Z. F. , Yin , Y. C. , Zhao , X. Q. , Xin , C. L. , Lian , P. Y. A new method for extracting oil from the oil shale. Chemistry and Adhesion , 2011 , 33 , 79–81 (in Chinese).

25. Xu , N. , Wang , W. X. , Han , P. F. , Lu , X. P. Effects of ultrasound on oily sludge deoiling. J. Hazard. Mater. , 2009 , 171(1–3) , 914–917.
http://dx.doi.org/10.1016/j.jhazmat.2009.06.091

26. Sayyar , S. , Abidin , Z. Z. , Yunus , R. , Muhammad , A. Extraction of oil from Jatropha seeds-optimization and kinetics. Am. J. Applied Sci. , 2009 , 6(7) , 1390–1395.
http://dx.doi.org/10.3844/ajassp.2009.1390.1395

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December