headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Silicate apatite phosphors for pc-LED applications; pp. 383–395

(Full article in PDF format) https://doi.org/10.3176/proc.2017.4.14


Authors

Marco Kirm, Eduard Feldbach, Henri Mägi, Vitali Nagirnyi, Eliko Tõldsepp, Sebastian Vielhauer, Thomas Jüstel, Thomas Jansen, Nikolai M. Khaidukov, Vladimir N. Makhov

Abstract

Single-phase ceramic samples of silicate apatites M2Ln8(SiO4)6O2 (M = Mg, Ca, Sr; Ln = Y, La) undoped and doped with Eu3+, Ce3+, or Mn2+ ions were obtained by the high-temperature solid-state reaction technique using precursors synthesized under hydrothermal conditions. The phosphors were characterized by XRD analysis, Raman spectroscopy, and steady-state/time-resolved and site-selective photoluminescence spectroscopy under blue-to-VUV excitation. It is shown that the small-radius Mg2+ ions, which can occupy two types of suitable sites in the apatite structure, strongly influence luminescence properties of apatites, in particular the distribution of Eu3+ ions between these sites. A bright broad-band yellow emission (peaked at 560 nm with t < 1 ms) was obtained from the Mg2La8(SiO4)6O2:Eu apatite after annealing it in a H2(15%)/Ar reducing atmosphere. This emission is due to 5d–4f transitions of Eu2+ and is efficiently excited by near UV-to-blue light (300–450 nm). Silicate apatites co-doped with optimal concentrations of Eu3+/Eu2+ or Eu2+/Mn2+ can be considered as possible single-phase phosphors for application in warm white pc-LEDs.

Keywords

optical materials; luminescence of Eu3+, Eu2+, Ce3+, Mn2+; silicate apatites; pc-LED.

References

   1.  Feldmann , C. , Jüstel , T. , Ronda , C. R. , and Schmidt , P. J. Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. , 2003 , 13 , 511–516.
https://doi.org/10.1002/adfm.200301005

   2.  Schubert , E. F. and Kim , J. K. Solid-state light sources getting smart. Science , 2005 , 308 , 1274–1278.
https://doi.org/10.1126/science.1108712

   3.  Ye , S. , Xiao , F. , Pan , Y. X. , Ma , Y. Y. , and Zhang , Q. Y. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials , techniques and properties. Mat. Sci. Eng. , 2010 , R 71 , 1–34.

   4.  Smet , P. F. , Parmentier , A. B. , and Poelman , D. Selecting conversion phosphors for white light-emitting diodes. J. Electrochem. Soc. , 2011 , 158 , R37–R54.
https://doi.org/10.1149/1.3568524

   5.  Li , G. , Tian , Y. , Zhaoa , Y. , and Lin , J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. , 2015 , 44 , 8688–8713.
https://doi.org/10.1039/C4CS00446A

   6.  Lin , Y.-C. , Karlsson , M. , and Bettinelli , M. Inorganic phosphor materials for lighting. Top. Curr. Chem. (Z) , 2016 , 374 , 21.
https://doi.org/10.1007/s41061-016-0023-5

   7.  Xia , Z. and Liu , Q. Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci. , 2016 , 84 , 59–117.
https://doi.org/10.1016/j.pmatsci.2016.09.007

   8.  Xiao , F. , Xue , Y. N. , and Zhang , Q. Y. Y4MgSi3O13:RE3+ (RE = Ce , Tb and Eu) nanophosphors for a full-color display. Physica B , 2010 , 405 , 4445–4449.
https://doi.org/10.1016/j.physb.2010.08.012

   9.  Zuev , M. G. , Karpov , A. M. , and Shkvarin , A. S. Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals. J. Solid State Chem. , 2011 , 184 , 52–58.
https://doi.org/10.1016/j.jssc.2010.10.014

10.  Shen , Y. , Chen , R. , Gurzadyan , G. G. , Xu , J. , Sun , H. , Khor , K. A. , and Dong , Z. Synthesis and spectro­scopic investigations of Sr2Y8(SiO4)6O2: Eu2+ ,Eu3+ phosphor for white LEDs. Opt. Mater. , 2012 , 34 , 1155–1160.
https://doi.org/10.1016/j.optmat.2012.01.020

11.  Hsu , C.-H. , Das , S. , and Lu , C.-H. Color-tunable , single phased MgY4Si3O13: Ce3+ , Mn2+ phosphors with efficient energy transfer for white-light-emitting diodes. J. Electrochem. Soc. , 2012 , 159 , J193–J199.
https://doi.org/10.1149/2.077205jes

12.  Sokolnicki , J. and Zych , E. Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2: Eu2+ ,Eu3+ phosphor for white LEDs. J. Lumin. , 2015 , 158 , 65–69.
https://doi.org/10.1016/j.jlumin.2014.09.033

13.  Yuan , S. , Wang , L. , Cui , Z. , Yang , Y. , Zeng , H. , Cheviré , F. , et al. Color-tunable Eu2+ activated oxysilicate phosphors with oxyapatite structure. J. Mater. Sci. & Appl. , 2015 , 1 , 33–37.

14.  Dobrowolska , A. , Karsu , E. C. , Bos , A. J. J. , and Dorenbos , P. Spectroscopy , thermoluminescence and afterglow studies of CaLa4(SiO4)3O: Ln (Ln=Ce , Nd , Eu , Tb , Dy). J. Lumin. , 2015 , 160 , 321–327.
https://doi.org/10.1016/j.jlumin.2014.12.038

15.  Leu , L.-C. , Thomas , S. , Sebastian , M. T. , Zdzieszynski , S. , Misture , S. , and Ubic , R. Crystal structure of apatite type rare-earth silicate (Sr2RE2)(RE6)(SiO4)6O2 (RE=La , Pr , Tb , Tm , and Y). J. Am. Ceram. Soc. , 2011 , 94 , 2625–2632.
https://doi.org/10.1111/j.1551-2916.2011.04388.x

16.  Blasse , G. Influence of local charge compensation on site occupation and luminescence of apatites. J. Solid State Chem. , 1975 , 14 , 181–184.
https://doi.org/10.1016/0022-4596(75)90009-2

17.  Jang , K. H. , Khaidukov , N. M. , Tuyen , V. P. , Kim , S. I. , Yu , Y. M. , and Seo , H. J. Luminescence properties and crystallographic sites for Eu3+ ions in fluorthalenite Y3Si3O10F. J. Alloys Compd. , 2012 , 536 , 47–51.
https://doi.org/10.1016/j.jallcom.2012.05.010

18.  Omelkov , S. I. , Kiisk , V. , Sildos , I. , Kirm , M. , Nagirnyi , V. , Pustovarov , V. A. , et al. The luminescence micro­spectroscopy of Pr3+-doped LiBaAlF6 and Ba3Al2F12 crystals. Radiat. Meas. , 2013 , 56 , 49–53.
https://doi.org/10.1016/j.radmeas.2013.01.030

19.  Romet , I. , Buryi , M. , Corradi , G. , Feldbach , E. , Laguta , V. , Tichy-Racs , E. , and Nagirnyi , V. Recombination luminescence and EPR of Mn doped Li2B4O7 single crystals. Opt. Mater. , 2017 , 70 , 184–193.
https://doi.org/10.1016/j.optmat.2017.05.032

20.  Nagirnyi , V. , Kotlov , A. , Jönsson , L. , Kirm , M. , and Lushchik , A. Emission decay kinetics in a CaWO4:Bi crystal. Nucl. Instrum. Methods A , 2005 , 537 , 61–65.
https://doi.org/10.1016/j.nima.2004.07.235

21.  Shannon , R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A , 1976 , 32 , 751–767.
https://doi.org/10.1107/S0567739476001551

22.  Jansen , T. , Jüstel , T. , Kirm , M. , Mägi , H. , Nagirnyi , V. , Tõldsepp , E. , et al. Site selective , time and temperature dependent spectroscopy of Eu3+ doped apatites (Mg ,Ca ,Sr)2Y8Si6O26. J. Lumin. , 2017 , 186 , 205–211.
https://doi.org/10.1016/j.jlumin.2017.02.004

23.  Gupta , S. K. , Mohapatra , M. , Kaity , S. , Natarajan , V. , and Godbole , S. V. Structure and site selective luminescence of sol–gel derived Eu: Sr2SiO4. J. Lumin. , 2012 , 132 , 1329–1338.
https://doi.org/10.1016/j.jlumin.2012.01.011

24.  Ternane , R. , Ferid , M. , Panczer , G. , Trabelsi-Ayadi , M. , and Boulon , G. Site-selective spectroscopy of Eu3+-doped orthorhombic lanthanum and monoclinic yttrium polyphosphates. Opt. Mater. , 2005 , 27 , 1832–1838.
https://doi.org/10.1016/j.optmat.2004.11.005

25.  Wright , A. O. , Seltzer , M. D. , Gruber , J. B. , and Chai , B. H. T. Site-selective spectroscopy and determi­nation of energy levels in Eu3+-doped strontium fluorophosphate. J. Appl. Phys. , 1995 , 78 , 2456.
https://doi.org/10.1063/1.360099

26.  Wu , L. , Tian , X. , Deng , K. , Liu , G. , and Yin , M. Site selective spectroscopic study of an efficient red-emitting phosphor Y2MoO6: Eu. Opt. Mater. , 2015 , 45 , 28–31.
https://doi.org/10.1016/j.optmat.2015.02.034

27.  Fiaczyk , K. and Zych , E. On peculiarities of Eu3+ and Eu2+ luminescence in Sr2GeO4 host. RSC Advances , 2016 , 6 , 91836–91845.
https://doi.org/10.1039/C6RA18090F

28.  Khaidukov , N. M. , Kirm , M. , Feldbach , E. , Mägi , H. , Nagirnyi , V. , Tõldsepp , E. , et al. Luminescence properties of silicate apatite phosphors M2La8Si6O26:Eu (M = Mg , Ca , Sr). J. Lumin. , 2017 , 191 , Part A , 51–55.

29.  Orera , A. , Kendrick , E. , Apperley , D. C. , Orera , V. M. , and Slater , P. R. Effect of oxygen content on the 29Si NMR , Raman spectra and oxide ion conductivity of the apatite series , La8+xSr2-x(SiO4)6O2+x/2. Dalton Trans. , 2008 , 39 , 5296–5301.
https://doi.org/10.1039/b809062a

 
Back

Current Issue: Vol. 67, Issue 3 in Press, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December