headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Fluorescent nanodiamond array deposition on porous anodized aluminum oxide using asperity assisted capillary force assembly; pp. 416–421

(Full article in PDF format) https://doi.org/10.3176/proc.2017.4.15


Authors

Uldis Malinovskis, Andris Berzins, Janis Smits, Florian H. Gahbauer, Ruvin Ferber, Donats Erts, Juris Prikulis

Abstract

Array ordering of nanodiamonds with nitrogen-vacancy centers using porous anodized aluminum oxide (PAAO) templates is studied. Particle sorting and array formation are demonstrated with a polydisperse suspension of irregularly shaped diamonds with 28 nm number mean value diameter. The assembly is governed by a balance of withdrawal speed and evaporation driven particle flux, which is influenced by the asperities of the PAAO surface during the capillary and convective assembly dip-coating process. The resulting structures are dense (50 nm average center separation) isolated (non-touching) nanoparticle arrays with a size distribution that matches the topology of the template surface. The fluorescence signal is detected from arrays with an approximately 1:1 particle/pore filling ratio.

Keywords

porous anodic alumina, fluorescent nanodiamond, colloid assembly, templated deposition.

References

1. Wort , C. J. H. and Balmer , R. S. Diamond as an electronic material. Mater. Today , 2008 , 11 , 22–28.
https://doi.org/10.1016/S1369-7021(07)70349-8

2. Albrecht , A. , Koplovitz , G. , Retzker , A. , Jelezko , F. , Yochelis , S. , Porath , D. , et al. Self-assembling hybrid diamond-biological quantum devices. New J. Phys. , 2014 , 16(9) , 093002.
https://doi.org/10.1088/1367-2630/16/9/093002

3. Yu , S. J. , Kang , M. W. , Chang , H. C. , Chen , K. M. , and Yu , Y. C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. , 2005 , 127(50) , 17604–17605.
https://doi.org/10.1021/ja0567081

4. Schietinger , S. , Barth , M. , Aichele , T. , and Benson , O. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett. , 2009 , 9(4) , 1694–1698.
https://doi.org/10.1021/nl900384c

5. Smits , J. , Berzins , A. , Gahbauer , F. H. , Ferber , R. , Erglis , K. , Cebers , A. , et al. Estimating the magnetic moment of microscopic magnetic sources from their magnetic field distribution in a layer of nitrogen-vacancy (NV) centres in diamond. Eur. Phys. J. Appl. Phys. , 2016 , 73(2) , 20701.
https://doi.org/10.1051/epjap/2016150449

6. Mochalin , V. N , Shenderova , O. , Ho , D. , and Gogotsi , Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. , 2011 , 7(1) , 11–23.
https://doi.org/10.1038/nnano.2011.209

7. Dimitrov , A. S. and Nagayama , K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir , 1996 , 12(5) , 1303–1311.
https://doi.org/10.1021/la9502251

8. Malaquin , L. , Kraus , T. , Schmid , H. , Delamarche , E. , and Wolf , H. Controlled particle placement through convective and capillary assembly. Langmuir , 2007 , 23(23) , 11513–11521.
https://doi.org/10.1021/la700852c

9. Huang , C. H. , Lin , H. Y. , Tzeng , Y. , Fan , C. H. , Liu , C. Y. , Li , C. Y. , et al. Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles. Sens. Actuators A Phys. , 2012 , 180 , 49–54.
https://doi.org/10.1016/j.sna.2012.04.001

10. Baitimirova , M. , Pastare , A. , Katkevics , J. , Viksna , A. , Prikulis , J. , and Erts , D. Gold nanowire synthesis by semi-immersed nanoporous anodic aluminium oxide templates in potassium dicyanoaurate-hexacyanoferrate electrolyte. Micro Nano Lett. , 2014 , 9(11) , 761–765.
https://doi.org/10.1049/mnl.2014.0489

11. Polyakov , B. , Prikulis , J. , Grigorjeva , L. , Millers , D. , Daly , B. , Holmes , J. D. , et al. Photoconductivity of germanium nanowire arrays incorporated in anodic aluminum oxide. J. Phys. Conf. Ser. , 2007 , 61(1) , 283–287.
https://doi.org/10.1088/1742-6596/61/1/057

12. Masuda , H. and Satoh , M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. , 1996 , 35 (Part 2 , No. 1B) , L126–L129.

13. Zhan , Z. and Lei , Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano , 2014 , 8(4) , 3862–3868.
https://doi.org/10.1021/nn500713h

14. Lee , W. and Park , S. J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. , 2014 , 114(15) , 7487–7556.
https://doi.org/10.1021/cr500002z

15. Hornyak , G. , Kr¨oll , M. , Pugin , R. , Sawitowski , T. , Schmid , G. , Bovin , J. O. , et al. Gold clusters and colloids in alumina nanotubes. Chem. Eur. J. , 1997 , 3(12) , 1951–1956.
https://doi.org/10.1002/chem.19970031210

16. Hsu , C. and Liu , H. H. Optical behaviours of two dimensional Au nanoparticle arrays within porous anodic alumina. J. Phys. Conf. Ser. , 2007 , 61 , 440–444.
https://doi.org/10.1088/1742-6596/61/1/088

17. Seo , I. , Kwon , C. W. , Lee , H. H. , Kim , Y. S. , Kim , K. B. , and Yoon , T. S. Completely filling anodic aluminum oxide with maghemite nanoparticles by dip coating and their magnetic properties. Electrochem. Solid State Lett. , 2009 , 12(9) , K59.
https://doi.org/10.1149/1.3154418

18. Park , H. , Kim , T. H. , Kang , S. W. , and Jeong , S. H. Nanoscale reaction vessels: highly ordered nanocrystal arrays inside porous anodic alumina nanowells. Int. J. Electrochem. Sci. , 2015 , 10 , 8447–8453.

19. Gordon , M. J. and Peyrade , D. Separation of colloidal nanoparticles using capillary immersion forces. Appl. Phys. Lett. , 2006 , 89(5) , 053112.
https://doi.org/10.1063/1.2266391

20. Kuemin , C. , Cathrein Huckstadt , K. , L¨ortscher , E. , Rey , A. , Decker , A. , Spencer , N. D. , and Wolf , H. Selective assembly of sub-micrometer polymer particles. Adv. Mater. , 2010 , 22(25) , 2804–2808.
https://doi.org/10.1002/adma.201090086
https://doi.org/10.1002/adma.201000396

21. Virganaviˇcius , D. , Juod˙enas , M. , Tamuleviˇcius , T. , Schift , H. , and Tamuleviˇcius , S. Investigation of transient dynamics of capillary assisted particle assembly yield. Appl. Surf. Sci. , 2017 , 406 , 136–143.
https://doi.org/10.1016/j.apsusc.2017.02.100

22. Malinovskis , U. , Poplausks , R. , Apsite , I. , Meija , R. , Prikulis , J. , Lombardi , F. , et al. Ultrathin anodic aluminum oxide membranes for production of dense sub-20 nm nanoparticle arrays. J. Phys. Chem. C. , 2014 , 118(16) , 8685–8690.
https://doi.org/10.1021/jp412689y

23. Malinovskis , U. , Berzins , A. , Gahbauer , F. H. , Ferber , R. , Kitenbergs , G. , Muiznieks , I. , et al. Colloidal nano-particle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly. Surf. Coat. Technol. , 2017 , 326 , 264–269.
https://doi.org/10.1016/j.surfcoat.2017.07.057

24. Li , G. H. , Zhang , Y. , Wu , Y. C. , and Zhang , L. D. Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys. Cond. Matter , 2003 , 15(49) , 8663–8671.
https://doi.org/10.1088/0953-8984/15/49/034

25. Chang , K. , Eichler , A. , Rhensius , J. , Lorenzelli , L. , and Degen , C. L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. , 2017 , 17(4) , 2367–2373.
https://doi.org/10.1021/acs.nanolett.6b05304

 
Back

Current Issue: Vol. 67, Issue 4 in Press, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December