headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
List of Issues
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Leaf-mimicking polymers for hydrophobicity and high transmission haze; pp. 444–449

(Full article in PDF format) https://doi.org/10.3176/proc.2017.4.24


Authors

Zhongjia Huang, Congcong Cai, Xinying Shi, Taohai Li, Marko Huttula, Wei Cao

Abstract

Gifted with unique optical and hydrophobic properties, the plant leaves have been recently considered as micro/ nanostructure prototypes for functional surface engineering. Imprinting bio-inspired structures onto surfaces can yield in similar functional properties than in the nature. In this article, we report on a simple and effective method to copy leaf surface structures onto poly-(methyl methacrylate) sheets. The replicated surface structures reduce optical reflectance and enhance optical haze. Besides, the artificial polymer sheets exhibit good hydrophobic properties. Correlation between optical haze and hydrophobicity was studied.

Keywords

bionic leaf replication, hydrophobicity, optical haze, contact angle.

References

   1.  Barthlott , W. and Neinhuis , C. Purity of the sacred lotus , or escape from contamination in biological surfaces. Planta , 1997 , 202 , 1−8.
https://doi.org/10.1007/s004250050096

   2.  Dorrer , C. and Rühe , J. Some thoughts on superhydrophobic wetting. Soft Matter , 2009 , 5 , 51−61.
https://doi.org/10.1039/B811945G

   3.  Brodribb , T. J. , Feild , T. S. , and Sack , L. Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol. , 2010 , 37 , 488−498.
https://doi.org/10.1071/FP10010

   4.  Wang , F. , Zhao , D. , Guo , Z. , Liu , L. , Zhang , Z. , and Shen , D. Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles. Nanoscale , 2013 , 5 , 2864−2869.
https://doi.org/10.1039/c3nr33748k

   5.  Scholes , G. D. , Fleming , G. R. , Olaya-Castro , A. , and van Grondelle , R. Lessons from nature about solar light harvesting. Nature Chem. , 2011 , 3 , 763−774.
https://doi.org/10.1038/nchem.1145

   6.  Huang , Z. , Yang , S. , Zhang , H. , Zhang , M. , and Cao , W. Replication of leaf surface structures for light harvesting. Sci. Rep. , 2015 , 5 , 14281.
https://doi.org/10.1038/srep14281

   7.  Raut , H. K. , Ganesh , V. A. , Nair , A. S. , and Ramakrishna , S. Anti-reflective coatings: a critical , in-depth review. Energy Environ. Sci. , 2011 , 4 , 3779−3804.
https://doi.org/10.1039/c1ee01297e

   8.  Huang , Z. , Shi , T. , Zhang , H. , Zhang , M. , Huttula , M. , and Cao , W. A computational study of antireflection structures bio-mimicked from leaf surface morphologies. Sol. Energy , 2016 , 131 , 131−137.
https://doi.org/10.1016/j.solener.2016.02.041

   9.  Neinhuis , C. and Barthlott , W. Characterization and dis­tribution of water-repellent , self-cleaning plant surfaces. Ann. Bot. , 1997 , 79 , 667−677.
https://doi.org/10.1006/anbo.1997.0400

10.  Ganesh V. A. , Raut , H. K. , Nair , A. S. , and Ramakrishna , S. A review on self-cleaning coatings. J. Mater. Chem. , 2011 , 21 , 16304−16322.
https://doi.org/10.1039/c1jm12523k

11.  Nakajima , A. , Fujishima , A. , Hashimoto , K. , and Watanabe , T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetyl­acetonate. Adv. Mater. , 1999 , 11 , 1365−1368.
https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F

12.  Feng , L. , Li , S. , Li , Y. , Li , H. , Zhang , L. , Zhai , J. , Song , Y. , Liu , B. , Jiang , L. , and Zhu , D. Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. , 2002 , 14 , 1857.
https://doi.org/10.1002/adma.200290020

13.  Gao , X. and Jiang , L. Water-repellent legs of water striders. Nature , 2004 , 432 , 36.
https://doi.org/10.1038/432036a

14.  Huang , Z. , Cai , C. , Wang , G. , Zhang , H. , Huttula , M. , and Cao , W. Structural color model based on surface morphology of morpho butterfly wing scale. Surf. Rev. Lett. , 2016 , 23 , 1650046.
https://doi.org/10.1142/S0218625X16500463

15.  Cassie , A. B. D. and Baxter , S. Wettability of porous surfaces. Trans. Faraday Soc. , 1944 , 40 , 546.
https://doi.org/10.1039/tf9444000546

16.  Chandler , D. Interfaces and the driving force of hydrophobic assembly. Nature , 2005 , 437 , 640−647.
https://doi.org/10.1038/nature04162

17.  Sun , T. , Feng , L. , Gao , X. , and Jiang , L. Bioinspired surfaces with special wettability. Acc. Chem. Res. , 2005 , 38 , 644.
https://doi.org/10.1021/ar040224c

18.  Chen , Y. , Li , F. , Cao , W. , and Li , T. Preparation of recyclable CdS photocatalytic and superhydrophobic films with photostability by using a screen-printing technique. J. Mater. Chem. A , 2015 , 3 , 16934–16940.
https://doi.org/10.1039/C5TA04065E

19.  Zhu , S. , Yang , X. , Li , T. , Li , F. , and Cao , W. Phase and morphology controllable synthesis of superhydrophobic Sb2O3 via a solvothermal method. J. Alloy Compd. , 2017 , 721 , 149–156.
https://doi.org/10.1016/j.jallcom.2017.05.327

 
Back

Current Issue: Vol. 67, Issue 2 in Press, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December