headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2020
Vol. 69, Issue 2
Vol. 69, Issue 1
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Characterizing the bio-functionalization of gold surface with total internal reflection fluorescence (TIRF) microscopy; pp. 27–34

(Full article in PDF format) https://doi.org/10.3176/proc.2020.1.02


Authors

Robin Ehrminger, Sergei Kopanchuk, Kairi Kivirand, Tavo Romann, Toonika Rinken, Mart Min, Ago Rinken

Abstract

 Quality of bioactive surface is crucial for achieving the required sensitivity and selectivity of biosensing systems. Numerous methods are available for the characterization of metal-coated surfaces, but only a few to test the efficacy of biomaterial immobilization and the level of non-specific binding. Herewith we propose to use total internal reflection fluorescence (TIRF) microscopy for the characterization of the surface analyte recognition capacity. Biomolecules were bound onto titanium/gold covered glass using three different self-assembled monolayers (SAM). The surfaces with attached antibodies were evaluated using the specific binding of fluorophore-labeled secondary antibodies and visualized with TIRF. Among studied SAMs, aminothiol layers with glutaraldehyde coupling demonstrated high binding capacity along with excellent homogeneity indicating their suitability for applications in biosensors. 

Keywords

TIRF microscopy, self-assembled monolayers, homogeneity, electrode surfaces, biosensing system, gold thin film.

References

 1. Xue , Y. , Li , X. , Li , H. , and Zhang , W. Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. , 2014 , 5 , 1–9.

https://doi.org/10.1038/ncomms5348

2. Lio , A. , Charych , D. H. , and Salmeron , M. Comparative Atomic Force Microscopy Study of the Chain Length Dependence of Frictional Properties of Alkanethiols on Gold and Alkylsilanes on Mica. J. Phys. Chem. B , 1997 , 101(19) , 3800–3805.

https://doi.org/10.1021/jp963918e

3. Hegner , M. , Wagner , P. , and Semenza , G. Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett. , 1993 , 336(3) , 452–456.

https://doi.org/10.1016/0014-5793(93)80854-N

4. Marti , O. , Colchero , J. , and Mlynek , J. Combined scanning force and friction microscopy of mica. Nanotechnology , 1990 , 1(2) ,141–144.

https://doi.org/10.1088/0957-4484/1/2/003

5. Shein , J. B. , Lai , L. M. H. , Eggers , P. K. , Paddon-Row , M. N. , and Gooding , J. J. Formation of Efficient Electron Transfer Pathways by Adsorbing Gold Nanoparticles to Self-Assembled Monolayer Modified Electrodes. Langmuir , 2009 , 25(18) , 11121–11128.

https://doi.org/10.1021/la901421m

6. Eckermann , A. L. , Feld , D. J. , Shaw , J. A. , and Meade , T. J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. , 2010 , 254(15–16) , 1769–1802.

https://doi.org/10.1016/j.ccr.2009.12.023

7. Radke , S. M. and Alocilja , E C. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens. Bioelectron. , 2005 , 20(8) , 1662–1667.

https://doi.org/10.1016/j.bios.2004.07.021

8. Briand , E. , Gu , C. , Boujday , S , Salmain , M. , Herry , J. M. , and Pradier , C. M. Functionalisation of gold surfaces with thiolate SAMs: Topography/bioactivity relationship – A combined FT-RAIRS , AFM and QCM investigation. Surf. Sci. , 2007 , 601(18) , 3850–3855.

https://doi.org/10.1016/J.SUSC.2007.04.102

9. Zamfir , L.-G. , Geana , I. , Bourigua , S. , Rotariu , L. , Bala , C. , Errachid , A. , et al. Highly sensitive label-free immunosensor for ochratoxin. A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens. Actuators , B , 2011 , 159(1) , 178–184.

https://doi.org/10.1016/j.snb.2011.06.069

10. Peterson , A. W. , Halter , M. , Tona , A. , Bhadriraju , K , and Plant , A. L. Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol. , 2009 , 10(16) , 1–17.

https://doi.org/10.1186/1471-2121-10-16

11. Löfås , S. , Johnsson , B. , Edström , Å. , Hansson , A. , Lindquist , G. , Müller-Hillgren , R.-M. , et al. Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens. Bioelectron. , 1995; 10(9–10) , 813–822.

https://doi.org/10.1016/0956-5663(95)99220-F

12. Porter , M. D. , Bright , T. B. , Allara , D. L. , and Chidsey , C. E. D. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry , infrared spectroscopy , and electrochemistry. J. Am. Chem. Soc. , 1987 , 109(12) , 3559–3568.

https://doi.org/10.1021/ja00246a011

13. Troughton , E. B. , Bain , C. D. , Whitesides , G. M. , Nuzzo , R. G. , Allara , D. L. , and Porter , M. D. Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: structure , properties , and reactivity of constituent functional groups. Langmuir , 1988 , 4(2) , 365–385.

https://doi.org/10.1021/la00080a021

14. Parviz , M. , Gaus , K. , and Gooding , J. J. Simultaneous impedance spectroscopy and fluorescence microscopy for the real-time monitoring of the response of cells to drugs. Chem. Sci. , 2017 , 8(3) , 1831–1840.

https://doi.org/10.1039/c6sc05159f

15. Techane , S. D. , Gamble , L. J. , and Castner , D. G. Multi­technique Characterization of Self-Assembled Carboxylic Acid-Terminated Alkanethiol Monolayers on Nanoparticle and Flat Gold Surfaces. J. Phys. Chem. C , 2011 , 115(19) , 9432–9441.

https://doi.org/10.1021/jp201213g

16. Benmouna , R. , Rachet , V. , Le Barny , P. , Feneyrou , P. , Maschke , U. , and Coqueret , X. Polymer Dispersed Liquid Crystals with Nanosized Droplets: SEM , FTIR and UV Spectroscopy Studies. J. Polym. Eng. , 2006 , 26(7) , 655–669.

https://doi.org/10.1515/POLYENG.2006.26.7.655

17. Koslowski , B. , Tschetschetkin , A. , Maurer , N. , and Ziemann , P. 4-Mercaptopyridine on Au(111): a scanning tunneling microscopy and spectroscopy study. Phys. Chem. Chem. Phys. , 2011 , 13(9) , 4045–4050. https://doi.org/10.1039/c0cp02162h

18. Axelrod , D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell. Biol. , 1981 , 89(1) , 141–145.

https://doi.org/10.1083/jcb.89.1.141

19. Axelrod , D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt. , 2001 , 6(1).

https://doi.org/10.1117/1.1335689

20. Jain , A. , Liu , R. , Xiang , Y. K. , and Ha , T. Single-molecule pull-down for studying protein interactions. Nat. Protoc. , 2012 , 7(3) , 445–452.

https://doi.org/10.1038/nprot.2011.452

21. Claessen , V. I. , Engelkamp , H. , Christianen , P. C. M. , Maan , J. C. , Nolte , R. J. M. , Blank , K. , and Rovan , A. E. Single-biomolecule kinetics: the art of studying a single enzyme. Annu. Rev. Anal. Chem. , 2010 , 3 , 319–340.

https://doi.org/10.1146/annurev.anchem.111808.073638

22. Gryczynski , I. , Malicka , J. , Gryczynski , Z. , and Lako­wicz , J. R. Surface Plasmon-Coupled Emission with Gold Films. J. Phys. Chem. B , 2004 , 108(33) , 12568–12574.

https://doi.org/10.1021/jp040221h

23. Chizhik , A. I. , Rother , J. , Gregor , I. , Janshoff , A. , and Enderlein , J. Metal-induced energy transfer for live cell nanoscopy. Nat , Photonics , 2014 , 8 , 124–127.

https://doi.org/10.1038/nphoton.2013.345

24. Lakowicz , J. R. Principles of fluorescence spectroscopy , 3rd ed. Springer , Boston , MA , 2006.

25. Mihklepp , K. , Kivirand , K. , Nikopensius , M. , Peedel , D. , Utt , M. , and Rinken , T. Design and production of antibodies for the detection of Streptococcus uberis. Enzyme Microb. Technol. , 2017 , 96 , 135–142.

https://doi.org/10.1016/j.enzmictec.2016.10.009

26. Kamińska , A , Witkowska , E. , Winkler , K. , Dzięcielewski , I. , Weyher , J. L. , and Waluk , J. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens. Bioelectron. , 2015 , 66 , 461–467.

https://doi.org/10.1016/j.bios.2014.10.082

27. Im , H. , Huang , X.-J. , Gu , B. , and Choi , Y.-K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. , 2007 , 2(7) , 430–434.

https://doi.org/10.1038/ nnano.2007.180

28. Mirsky , V. M. , Riepl , M. , and Wolfbeis , O. S. Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron. , 1997 , 12(9–10) , 977–989.

https://doi.org/10.1016/S0956-5663(97)00053-5

29. Zhang , J.-H. , Chung , T. D. Y. , and Oldenburg , K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. , 1999 , 4(2) , 67–73.

https://doi.org/10.1177/108705719900400206

 
Back

Current Issue: Vol. 69, Issue 2, 2020




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December