headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2020
Vol. 69, Issue 2
Vol. 69, Issue 1
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Dual coherent light array model for reflective rectangular metallic grating; pp. 74–80

(Full article in PDF format) https://doi.org/10.3176/proc.2020.1.08


Authors

Xiangnan Qiao, Jinkui Chu , Ran Zhang

Abstract

To study the mechanism of periodic change of reflective rectangular metallic gratings’ diffraction efficiencies, a dual secondary coherent light source array model was established based on the theory of Fabry-Pérot resonator. It was assumed that when incident light falls on the grating surface, it transforms into two coherent sources on each grating period. One is on the upper surface of the grating, reflected by the metal surface; the other is at the entrance of the grating groove and propagates in the form of a fundamental mode (λf­­­). Based on the above mentioned hypothesis, formulae for the phase difference Δϕ of two sources and diffraction efficiency for the first and zero order with grating height h, were established. Δϕ and h are linear relationships, the phase difference Δϕ changed due to the change of grating height h is the essencial cause of periodic changes of the diffraction efficiencies. When Δϕ has a certain value, the energy is only distributed in the zero or the first order direction. The model does not only show the change regularity of each diffraction order’s diffraction efficiency of reflective rectangular metallic grating, but it also shows the correlation of each diffraction order. It can help to predict diffraction performance of rectangular metallic gratings and to design gratings. 

Keywords

Fabry-Pérot resonator, dual secondary coherent light source array model, fundamental mode, phase difference, diffraction efficiency.

References

1. Ebbesen , T. W. , Lezec , H. J. , Ghaemi , H. F. , Thio , T. , and Wolff , P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature , 1998 , 391 , 667-669.
https://doi.org/10.1038/35570

2. Porto , J. A. , García-Vidal , F. J. , and Pendry , J. B. Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. , 1999 , 83 , 2845-2848.
https://doi.org/10.1103/PhysRevLett.83.2845

3. D'Aguanno , G. , Mattiucci , N. , Bloemer , M. J. , de Ceglia. , D. , Vincenti , M. A. , and Alù , A. Transmission resonances in plasmonic metallic gratings. JOSA B , 2011 , 28(2) , 253-264.
https://doi.org/10.1364/JOSAB.28.000253

4. Astilean , S. , Lalanne , P. , and Palamaru , M. Light transmission through metallic channels much smaller than the wavelength. Opt. Commun. , 2000 , 175(4-6) , 265-273.
https://doi.org/10.1016/S0030-4018(00)00462-4

5. Chu , J. , Zhang , Y. , Wang , Z. , and Guan , L. Polarizing color filter based on subwavelength metallic grating with grooves carved in. Opt. Commun. , 2014 , 315 , 32-36.
https://doi.org/10.1016/j.optcom.2013.10.058

6. Wang , Z. , Chu , J. , and Wang , Q. Transmission analysis of single layer sub-wavelength metal gratings. Acta Optica Sinica , 2015 , 35 , 0705002(1-7).
https://doi.org/10.3788/AOS201535.0705002

7. Yu , Z. , Liang , R. , Chen , P. , Huang , Q. , Huang , T. , and Xu , X. , Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide. Plasmonics , 2012 , 7(4) , 603-607.
https://doi.org/10.1007/s11468-012-9348-2

8. Wang , B. and Wang , G. P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl. Phys. Lett. , 2005 , 87 , 013107.
https://doi.org/10.1063/1.1954880

9. Liu , B. and Sun , Z. Plasmon resonances in deep nanogrooves of reflective metal gratings. Photonics Nanostruct. Fundam. Appl. , 2012 , 10(1) , 119-125.
https://doi.org/10.1016/j.photonics.2011.08.004

10. Cheng , F. , Fei , Y.-T. , and Fan , K.-C. New method on real-time signal correction and subdivision for grating-based nanometrology. In Proceedings of the 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design , Manufacturing , and Testing of Micro- and Nano-Optical Devices and Systems , Chengdu , China , November 19-21 , 2008 (Han , S. , Kameyama , M. , and Luo , X. , eds) , 7284.
https://doi.org/10.1117/12.832061

11. Fan , K. C. , Fei , Y. T. , Yu , X. F. , Chen , Y. J. , Wang , W. L. , Chen , F. , and Liu , Y. S. Development of a low-cost micro-CMM for 3D micro/nano measurements. Meas. Sci. Technol. , 2006 , 17(3) , 524-532.
https://doi.org/10.1088/0957-0233/17/3/S12

12. Fan , K. C. , Liu , Y. S. , Chen , Y. J. , and Cheng , F. A linear diffraction grating interferometer with high accuracy. In Proceedings of the Third International Symposium on Precision Mechanical Measurements , Urumqi , China , August 2-6 , 2006 (Fan , K. C. , Gao , W. , Yu , X. , Huang , W. , and Hu , P. , eds) , 6280.
https://doi.org/10.1117/12.715260

13. Ye , W. , Zhang , M. , Zhu , Y. , Wang , L. J. , Hu , J. , Li , X. , and Hu , C. Translational displacement computational algorithm of the grating interferometer without geometric error for the wafer stage in a photolithography scanner. Opt. Express , 2018 , 26(26) , 34734-34752.
https://doi.org/10.1364/OE.26.034734

14. Ye , W. , Zhang , M. , Zhu , Y. , Wang , L. , Hu , J. , Li , X. , and Hu , C. Ultraprecision Real-Time Displacements Calculation Algorithm for the Grating Interferometer System. Sensors , 2019 , 19(10) , 2409.
https://doi.org/10.3390/s19102409

15. Hsieh , H.-L. and Pan , S.-W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements. Opt. Express , 2015 , 23(3) , 2451-2465.
https://doi.org/10.1364/OE.23.002451

16. Moharam , M. G. and Gaylord , T. K. Rigorous coupled-wave analysis of metallic surface-relief gratings. JOSA A. 1986 , 3(11) , 1780-1787.
https://doi.org/10.1364/JOSAA.3.001780

17. Moharam , M. G. and Gaylord , T. K. Rigorous coupled-wave analysis of planar-grating diffraction. JOSA , 1981 , 71 , 811-818.
https://doi.org/10.1364/JOSA.71.000811

18. Moharam , M. G. , Grann , E. B. , Pommet , D. A. , and Gaylord , T. K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA A. 1995 , 12(5) , 1068-1076.
https://doi.org/10.1364/JOSAA.12.001068

19. Moharam , M. G. , Pommet , D. A. , Grann , E. B. , and Gaylord , T. K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings-enhanced transmittance matrix approach. JOSA A. 1995 , 12(5) , 1077-1086.
https://doi.org/10.1364/JOSAA.12.001077

20. Born , M. and Wolf , E. Principles of Optics: Electromagnetic Theory of Propagation , Interference and Diffraction of Light , 7th ed. Cambridge University Press , Cambridge , 1999.

21. Palik , E. D. Handbook of Optical Constants of Solids. Academic Press , Orlando , 1985.

22. Yee , K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. , 1966 , 14(3) , 302-307.
https://doi.org/10.1109/TAP.1966.1138693

 
Back

Current Issue: Vol. 69, Issue 2, 2020




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December