PLACES OF IMPORTANCE AND SOCIAL COMMUNICATION:
STUDYING THE PRE-ROMAN CAIRN FIELD OF VIIRIKALLIO IN LAIHIA, FINLAND

This paper studies the cairn field of Viirikallio in Laihia, Finland. Burial sites are extremely complex, being infused with ideological reflections of the society that built them. In the present paper this complex nature is viewed by combining GIS-technology with social theory of Erving Goffman and Pierre Bourdieu. It is suggested that the cairn field functioned, among other things, as a site reflecting the control of important resources, as well as ideological and social distinction and stratification within the society.

Social front and distinction

This paper studies social stratification and ideology through burial remains, which is one of the most regular approaches in reconstructing social structures (Dark 1995, 90). Cairn sites and other burial monuments are means of communicating social status, if not directly then at least ideologically as burial sites are closely connected with ideology (e.g. Morris 1987, 32; Trinkaus 1995, 56 f.; Diinhoff 1997, 111; Härke 1997, 23). Ideology is of course a non-corporeal social construct, but it cannot exist outside material realities and the material world directly both influences and reflects a society’s ideology (Feldt 2005, 55 f.). Therefore what we see in the material remains has not been created randomly, but has been based on a reality both created and upheld socially (Feldt 2005, 56). Thus we may come to the conclusion that a society’s burial site is not a randomly created entity, but is based on a socially created and perceived reality, and as this reality is social and not material, albeit being strongly influenced by material factors, utilising social theory in the interpretation process is fundamental.
It is worth remembering that the link between archaeological data and a theory, any theory, is in the end a leap of faith as the empiric material archaeologists study has been created in a reality that no longer exists and therefore cannot be directly observed. Therefore all the concepts and social truths that were once tied to archaeological remains are gone, and we are left with the daunting task of trying to re-instate meaning and concepts to these dead remains (see Kaliff 1997; 2004). This is not only difficult but also dangerous as our concepts and meanings are embedded in a reality of the present day and not the past (Kaliff 2004). However, with the help of social theories devised for the study of the manners how and reasons why humans act the way they act, aids us in bringing forward plausible suggestions for the social reasons behind archaeological remains. This is not to claim that sociological studies of present day societies are applied as is the archaeological material, but that the general theory is applied to the interpretation of archaeological data with the stand that the basic mechanisms of human action and practice have been similar in the past as they are now, even though the temporal and cultural gaps between the present and past societies are great.

In this paper two sociologists, Erving Goffman and Pierre Bourdieu, provide the theoretical framework via which the social factors behind one Finnish cairn site are interpreted. Goffman is chosen, because in his studies he focused on the manner in which humans act in social situations. Though he mainly concentrated on micro-level interactions and did not specifically centre on the way how material culture was utilised in social interaction situations, his theories and ideas clearly imply this material side of social interactions, and the current implication is explored further in this paper. Pierre Bourdieu is another sociologist whose theories are utilised due to his studies of habitus, and especially distinction and their connection with social stratification that, this is our taken stand, burial grounds are inevitably connected with. Position in social space is reflected through habitus – enduring disposition which determines the possibilities and impossibilities of social reality – taken for granted aspects of the world. In other words it is a sense of one’s place, as well as a sense of the place of others in the world and the “law” of the social world conditioned into each agent from the beginning of their lives (Bourdieu 1977, 72, 81; 1984, 170 ff.; 1989, 19; 1990, 55 ff.; 2002; Hillier & Rooksby 2002, 5). Habitus is the operator of distinction which in turn is the reification of the agent’s social position – practices, manners, tastes and goods are associated with different positions in the social space and agents choose from the available goods those that suit their own social position, i.e. those that occupy a corresponding position in the social space (Bourdieu 1984; 1989, 19; 1998, 8 f.). In this paper we deal with burials as “available goods” and thus interpret them as a representation of social distinction.

The Canadian sociologist Erving Goffman defined the concept of “social front” as a practice where agents, in dealing with others, always put on a face and play a role (Goffman 1959 [1984]; 1967). In other words, agents uphold a social front towards others which reflects an image which they wish to deliver and which others expect them to deliver, depending on their role in the society
This means that every social front is guided by pre-set expectations of what is proper and expected of each agent in their respective social position and situation and what is not, and thus Goffman’s social front is reminiscent of Bourdieu’s concept of habitus (see Bourdieu 1977, 72; 1984, 170 ff.; 1990, 55 f.). The social front is created with a code with which agents use in elaborate, and constant, communication of their social properties (Goffman 1966, 33 ff.; 1967 [1982], 55). Goffman calls this code the body idiom and demeanour and they include, for example, such things as manners and appearance (Goffman 1967 [1982], 55). To use their social front to deliver the message they want, agents have to be mentally and physically in control of themselves (Goffman 1967 [1982], 259) and material culture and its manipulation is one way of physical control. Material culture is used to distinguish an agent’s perceived social status from other agents’ perceived social status (see e.g. Bourdieu 1984, 34 ff.; 1989, 19 f.). This can be manifested on different scales from personal gear to community level communication. In this paper we are interested in the community level communication and apply Goffman’s ideas of social communication and physical control to cairn fields. As burial monuments are clearly visible and defined entities in a landscape, they have most likely held a special position in the material manifestation of the social front of at least one group within the society that built them.

With cairns and other burial monuments the builder physically takes control of a space. In addition to the importance of the monument itself as a burial, its location, shape and size are most likely in relation with the social front of the agents involved. Thus archaeological burial sites are materially manifested social fronts on a large scale and reflect an idealised image of the society of the builders (see Goffman 1967 [1982], 268 f.). By taking position in a certain kind of place, agents want to physically control important environments (see Kaliff 1997, 70 f.).

In this paper we study the cairn field of Viirikallio, Laihia (Finland) as a complex site infused with ideology of the society that built them. Studying the relation between this burial site and its surrounding landscape, and the relations of different parts within the burial site, reveals information about the ideology and social front behind the construction of the cairns.

Viirikallio and its surroundings

Viirikallio is located in Ostrobothnia, Finland (Fig. 1) on one of the highest points in the region, ca. 24–39 m above sea level. It was found in 1986 and was studied between 1987 and 1989 by Mirja Miettinen (Miettinen 1991; 1992) and in 2009 by Jari-Matti Kuusela and Samuel Vaneeckhout (Kuusela et al. 2009). The site consists of cairns, cooking pits and an activity area defined as a Bronze Age dwelling site (Miettinen 1994; 1998, 87 ff.). Three cairns, two cooking pits and part of the activity area have been excavated (Miettinen 1991; 1992). In addition, in the spring 2009, Kuusela and Vaneeckhout conducted a mapping of
Two cairns were excavated by Mirja Miettinen in the late 1980s and the third one by Kuusela and Vaneeckhout in autumn 2009.

One of the excavated cairns is covered with red sandstone slabs, an Ostrobothnian phenomenon in some of the Pre-Roman and Early Roman Iron Age cairns which is not, with very few exceptions, encountered in cairns situated at lower elevations than 22.5 m a.s.l. (Miettinen 1986; 1998, 67, 87; Holmblad & Herrgård 2005, 134). The other cairn is oblong and, according to Miettinen, roughly boat-shaped (Miettinen 1998, 88). According to the drawings of the cairn in the excavation report (Miettinen 1991, 32 f.) this is questionable. The form is oblong, but only very roughly boat-shaped. It is the original shape of the cairn as it corresponds with the sooty culture layer under the stones. No artefacts were found from either cairn, but both have been interpreted as inhumation burials (Miettinen 1998, 87 f.).

Excavations at the activity area revealed textile-impressed ceramics, ceramics with scratched surface resembling the Morby Ware, quartz flakes and stone artefacts (Miettinen 1994; 1998, 89; for a recent exhaustive study concerning textile ceramics see Lavento 2001 and the references therein). It may be questionable to define this area as a dwelling site due to a lack of structural remains associated with dwelling sites of Late Bronze Age/Early Iron Age (see e.g. Salo 1981, 77 ff.; 1984, 115 ff.; Seger 1986a; 1986b; Kotivuori 1987a; Hiekkanen & Seger 1988; Nuñez & Uino 1997; Salo 1997, 84 ff.). The site seems to have been used for
processing stone tools, hence the three clusters of flakes, hammer- and anvil stones found nearby stones suitable for sitting (Miettinen 1992; 1998, 89). A number of good-quality quartz tools, both finished and unfinished, were also discovered (Miettinen 1992; 1994; 1998, 89). Based on the artefacts and the absence of structural remains, we call this site an activity area rather than a dwelling site.

Two 14C-samples have been taken from the cooking pits; the first (Hel-2683) taken from a cooking pit situated roughly at 30 m a.s.l. and the other (Hel-2684) taken from a cooking pit situated at 35 m a.s.l. give dates of cal. 800–250 BC and cal. 600–360 BC respectively (Miettinen 1998, 176). The proximity of the cooking pits, cairns and activity area points to roughly contemporary use of the different parts of the site. Thus the site was in use during the Late Bronze Age and/or the Early Iron Age though the dating is only indicative as the margins are very wide and the samples come from the soot layers of the cooking pits (Miettinen 1991, 10; 1992, 5). The macrofossil samples from Viirikallio have been studied at Umeå University (Peter Holmblad, pers. comm.) and an osteological analysis of the animal bone fragments found from the samples have been analysed by PhD Anna-Kaisa Puputti at the University of Oulu (Anna-Kaisa Puputti, pers. comm). The results of these analyses will be published later by Holmblad.

Though neither of the excavated cairns have an absolute date, it is reasonable to assume they are built around the end of the Bronze Age and/or the beginning of the Pre-Roman Iron Age. In addition to the 14C-date, the distinctive typological feature of the red sandstone slabs in one of the cairns is typically associated with Pre-Roman and Early Roman Iron Age and is not encountered in Bronze Age cairns and, except rare occasions, on cairns younger than the Early Roman Iron Age (Miettinen 1986; 1998, 67, 87). Also the morphology of the cairn field itself fits well with what we know of the cairn tradition of the Pre-Roman Iron Age. At the end of the Bronze Age the tradition of erecting large single cairns started to be replaced with the building of cairn fields consisting of small cairns of varying shape (Meinander 1977, 22 f.). Furthermore the cairn fields were situated in different topographical landscapes than during the Bronze Age. Where Bronze Age cairns were often situated on top of high cliffs the later cairn fields were built on lower hillocks (Meinander 1977, 22 f.; Salo 1981, 150; 1997, 93; Okkonen 2003, 32 f.). This is in line with a contemporary development observed in Sweden (e.g. Thedéen 2004, 170; Feldt 2005; Arnberg 2007, 175). Furthermore, the isostatic land uplift curves of the Viirikallio site give it a TPQ-date of 800 BC perfectly correlating with the time often given for the change in the burial tradition from single cairns to cairn fields. Lastly, the combination of cooking pits and cairns, when it occurs, is strongly linked with Pre-Roman Iron Age (Kotivuori 1987b; 1992; Okkonen 1993; 2003, 205 ff.). A good morphological equivalent, and an example of the combination of remains typical of the late Bronze Age/Pre-Roman Iron Age, for Viirikallio comes from Kemi, northern Finland. The site of Kiimamaa was excavated in 1992–93 by Jari Okkonen and it originally contained
Places of importance and social communication

eight cairns and a cooking pit (Okkonen 1993; 2003, 205 ff.). Two cairns and the cooking pit were excavated and one of the cairns contained the remains of a cremation burial, whereas the cooking pit yielded ceramics of type Sär 2. Radiocarbon dates (Hel-3263, Hel-3682, Hela-50) place the site to the Bronze Age and Pre-Roman Iron Age (cal. 400–160 BC, cal. 760–360 BC, cal. 1020–760 BC respectively) (Okkonen 1993; 2003, 205 ff.).

At the time Viirikallio would have been coastal, i.e. the likely period of use of the cairns and cooking pits, the site was situated at the northern head of the Pahaluoma bay on one of its steepest and most stable parts (Fig. 2). Stability of the shoreline is a common feature related to the location of prehistoric settlements and cairn sites (Vanneekhout et al., in press). The bay is shallow at the inner part and steeper at the head. Rautakallio, another large cairn site (>100 cairns), is situated on the southern head. Some archaeological remains have been discovered on the inside of the bay where the coastline has been less stable and thus land-uplift has had a faster effect. None of these remains are so elaborate as Rautakallio or Viirikallio. South of Rautakallio we find the smaller bay of the Madesjoki river with two large clusters of cairns situated on both sides of the head of the bay – Nikkarinloukko (>200 cairns) and Leppäkoskenhakkoos (>100 cairns). The inner part of the bay again has smaller clusters of cairns (< 50). The map in figure 2 shows how the most extensive sites are situated at the mouth of the bays. The Madesjoki bay is smaller and shallower than the Pahaluoma bay and the infill due to land-uplift happened faster at Madesjoki than at Pahaluoma.

Fig. 2. Map of Madesjoki and Pahaluoma bays with the distribution of large and small sites (white squares). The size of the sites is overestimated. The largest sites are situated at the mouths of the ancient bays.
Results of the spring 2009 field studies

With the studies in spring 2009 we wanted to find an answer to two questions. The first is the question of how Viirikallio is related to other archaeological remains in the same region. This question is answered on the basis of the information of archaeological remains provided by the register of the National Board of Antiquities and shoreline displacement data (Okkonen 2003) combined with a digital elevation model of the National Land Survey of Finland. The second question deals with the intra-site organization at Viirikallio – how are the remains, cairns and cooking pits situated in the landscape and in relation to other in-site remains. In order to answer this question, we collected spatial information on the location and elevation of the remains with the aid of a high-resolution RTK-GPS and a total station (Kuusela et al. 2009).

On the map made during the 1987–89 excavations, 94 cairns are identified at Viirikallio (Miettinen 1991; 1992). During our mapping in the spring 2009 we found 38 cairns of which 28 are obvious and 10 less obvious ones. The less obvious cairns are small, have an undetermined shape and due to turf cover and frost, their nature could not be determined with certainty. Many of the cairns marked in the 1980s map were clearly of another nature than prehistoric – one of them for example was related to a modern roadside ditch. Some cairns marked in the map were simply not found. The cairns we have marked, are the ones we deemed the most likely to be prehistoric burial cairns. As is often the case with the cairn fields of the Early Iron Age, they consist of cairns with varying form and size which makes their identification as prehistoric difficult and often only excavations can verify their nature with any certainty (Miettinen 1986, 63).

Overall we mapped two cairn clusters – one in the south-west and the other in the north-east of our area of study (Fig. 3). The two large clusters are subdivided into smaller clusters containing five or six cairns. In the north-east cluster two of these smaller clusters can be identified and in the south-west two or three. In all of the smaller clusters there are one or two large cairns, a number of smaller ones and one very small. This is most obvious in the north-east cluster. It appears that the larger cairns are situated higher than the smaller.

The two cairns excavated in the 1980s belong to the south-west cluster whereas the third, excavated in 2009, belongs to the north-east cluster. One of the excavated cairns in the south-west cluster, the one covered with red sandstone slabs, holds a central position (Fig. 3). It is located on a position from where almost all the other cairns in the south-west cluster are visible and is easily the largest of the cluster, or indeed the whole site.

The reconstruction of the surface (Fig. 3), based on the elevation data we gathered with a total station and an RTK-GPS, shows how there has been a lower zone, a pond or wetland, between the south-west cairn cluster and the activity area in the north. Some of the cairns, among those the excavated “boat-shaped” cairn, are situated on a ridge between the pond/wetland and what would have been the sea at the time of occupation.
In August and September 2009 we excavated a cairn situated at 27 m a.s.l. (Fig. 3). The dimensions of the cairn are $3.75 \times 4.35 \times 0.5$ m and it is thus one of the mid-sized cairns at Viirikallio (Fig. 4). It turned out to be a likely burial, though no grave goods were discovered. The cairn had been built on top of a natural depression altered prior to the construction. Three large boulders had been utilised in the cairn’s structure. Larger stones had been placed on the edges of the depression to form a rectangular framework (Fig. 4). The southern and western sides of the depression had been steepened and stones had been carefully laid to form a straight wall structure alongside this steep side of the depression (Fig. 5). The burial had likely been an inhumation because no burnt bone was discovered. The western side of the cairn, the space in the nook of two large boulders, contained a very dark and sooty soil layer, but neither the excavations nor the macrofossil analyses from the soil samples revealed traces of burnt bone (Holmblad 2009). At this time it seems that the burial had been placed on the eastern side of the cairn, as it appears that boulders on the bottom of the cairn pit naturally separate this area from the small nook between the large boulders, and the soil layers clearly differed from each other on these two sides. If this is the case, then the orientation of the burial would have been roughly north–south.

Inhumation in a pit underneath a stone setting has two parallels from Kemi, northern Finland. At Länkimaa two cairns were excavated in 1992 of which both
Fig. 4. The cairn excavated in 2009.

Fig. 5. The wall structure discovered in the cairn excavated in 2009.
turned out to be inhumation burials and in which the burials had been made in a pit beneath the stone setting (Eskola & Ylimaunu 1993). These cairns differ from the Viirikallio cairn in that the pits had been apparently dug and both contained grave goods, of which one brooch dates the other burial to early Migration Period, though in general this type of burial is believed to belong to the Roman Iron Age (Huurre 1979, 126; Salo 1984, 207 f., 228; Eskola & Ylimaunu 1993, 8 f.; Okkonen 2003, 63). Another parallel is a cairn at Itärova which revealed an inhumation made in a rectangular pit below the stone setting of the cairn (Krankka 1993; Okkonen 2003, 64). The pit was lined with larger stones that formed a “coffin-like framework” for the burial (Krankka 1993, 3 f.; Okkonen 2003, 64). Unburnt fragments from human limb-bones and badly damaged fragments from an iron blade and tang, suspected of being from a spearhead or a knife, were discovered from the pit (Krankka 1993, 4; Okkonen 2003, 64). The Itärova burial has been dated to around 200 BC (Krankka 1993, 5; Okkonen 2003, 64). The Itärova cairn also differs from the Viirikallio cairn in that the pit had been dug, but it appears as if a similar idea had been behind the construction of the Viirikallio cairn as well, only this time a natural depression had been utilised.

The date of the parallels ranges from the Pre-Roman Iron Age to the Migration Period but in the case of the Viirikallio cairn we at this time rule out a young date because already at the beginning of the current era the sea level would have been well below 20 m a.s.l., and the sea would have been far from Viirikallio. As there is strong evidence of cairn sites following the coast during the Bronze Age/early Iron Age in the Bothnian Bay area (Okkonen 2001), a date much younger than Pre-Roman Iron Age for the cairn seems unlikely.

Extra- and intra-site architecture of Viirikallio

Some of the elements discussed earlier seem to be significant for our understanding of the site. On a larger scale we note that Viirikallio would have been located on the northern head of a bay on one of its most stable parts. It seems likely that most of the remains at Viirikallio, especially the cooking pits and the south-west cairn cluster, are relatively contemporary. It is impossible to categorically define the cooking pits and surrounding area as a dwelling site, as no structural remains have been discovered in contrast with what we would expect for Late Bronze Age/Early Iron Age dwelling sites. It is as likely to be an activity area related to the burial traditions of the time, and/or to an activity not related to the burials at all as will be discussed later – at least the possibility should not be ruled out at this time. The relation between the south-west and the north-east cairn clusters was the subject of the excavation of autumn 2009 and it seems that this cluster also consists of burial cairns that could well be roughly contemporary with the south-west cairns.

Viirikallio has been, like most sites in Laihia and Ostrobothnia, located close to the shore, which is a common feature of settlement from all times (Small & Cohen 2004). By using the isostatic land uplift curves for the Vaasa region (Okkonen 2003),
we have modelled the evolution of the shorelines in Laihia between 1500 and 250 BC (Fig. 6). The earliest possible date for Viirikallio based on the land-uplift is ca. 800 BC and at that time, or shortly later, the cairns of the south-west cluster were situated around a pond/wetland area.

The cairns’ location near a wetland or the sea, as well as the presence of the cooking pits, is interesting. The function of the cooking pits is by no means certain but it has been suggested they are connected with seal hunting and the manufacturing of train oil, hence their obvious connection with shores and the sea (Okkonen & Äikäs 2006, 29 ff.). Thus a place with cooking pits would be a place that holds economic importance for the society in question and building burial monuments, like cairn fields, on such a site signals the wish for the builders of the cairns to be associated with this place of economic importance. In addition to the closeness of the sea, Viirikallio has likely been surrounded by wetlands, which have their own importance as ecosystems (Lindholm & Heikkilä 2006) and have been intensely used by different types of societies (Nicholas 1998). Building burial monuments in nearby wetland once again signals the wish for the builders to be associated with this important economic landscape.

An important factor related to wetland is its spiritual function (Nicholas 1998, 720). Several examples of wetland burials and sacrifices of both humans and artefacts are known from all over Europe (Engelhardt 1867; Green 1998, 177 ff.; Fontijn 2008). There is also a well-known wetland burial case from the Finnish Iron Age (Tallgren 1918, 76 ff.; Meinander 1950, 137; Wessman 2009). This spiritual importance of wetlands goes hand in hand with their economic importance, and in the end it would be arbitrary to separate them – because they were important economically, they were important spiritually, and vice versa. What is relevant is that they were considered important and thus a group of people wanted to be associated with them and so the burial sites are sites meant for communication and are social fronts of the builders – a materialization of their wish to be associated with a place with both economic and spiritual significance.

At Viirikallio this communication occurs on two levels. First of all the community building the cairns communicates the importance of the location where they build their burial moments. Related to the importance of location is the importance of the individuals buried at the location. It is likely that only a distinctive part of the society was buried in cairns and cairn fields (Miettinen 1998, 64; Mägi 2002, 11, 74, 123; Pihlman 2004; Lang 2007, 224; Asplund 2008, 355). Burial cairns thus reflect social distinction and stratification in the society.

The second level of communication happens at the level of individual cairns. At Viirikallio one cairn stands out because of its size – it is the largest cairn of the site and the presence of red sandstone slabs adds to its distinctiveness. It is also located in the middle of its cluster on the highest point of the cluster and there are a number of large boulders around it. All of these elements are common in relation to cairns of this type (Miettinen 1986; 1998, 67; Holmblad & Herrgård 2005, 134). A similar phenomenon of one dominating cairn has been
Fig. 6. Shoreline displacement between 1500 and 250 BC in the Laihia region.
observed in Swedish cairn fields of the early Iron Age (Thedéen 2004, 170 ff.; Feldt 2005, 121) as well as in Estonia, though in Estonia this dominance manifests in a different manner. Valter Lang has studied late Bronze Age and early Iron Age burials via NAT-analysis (Hedeager 1992, 103 ff.; Lang 2007, 226) and has found out that already from the Bronze Age onwards, settlement units with different wealth and social status have existed (Lang 2007, 226 f.). He also notes that an elite grave, or graves, are often surrounded by poorer and simpler graves and that elite graves are never located adjacent to each other (Lang 2007, 227 f.). If we accept this analogy from Estonia and apply it to the cairn fields in our study area, we note that the dominant cairns often covered with red sandstone slabs are not located adjacent to each other, and of the cairn fields in Ostrobothnia, roughly 10% contain cairns covered with red sandstone slabs (Miettinen 1986, 63). If we now take this feature, the red sandstone slabs, as a feature which denotes distinction, we may draw a parallel between them and Lang’s elite graves and via this we may observe a clear sign of social stratification within the grave field – not everyone was buried in a cairn covered with red sandstone slabs and thus, by this definition alone, we see the existence of inequality within the elite stratum. A lower degree of distinction in the cairn field of Viirikallio is visible in the positive relation between size and location of the cairns in the smaller clusters – the largest cairns are generally situated on higher ground than the smaller ones. These elements suggest a level of stratification within the group buried in the cairn field (see also Feldt 2005, 55, 127, 170, 208 f.). Thus, though the persons buried in the cairn field were probably members of the elite stratum of society, there was also stratification within the social elite itself.

Social or temporal stratification?

It could be argued that the cairn field of Viirikallio contains only temporal stratigraphy and that for instance those cairns situated on higher elevations are the eldest, and thus the observed intra-site architecture is solely the result of changing burial traditions through time and not social factors. However, such interpretation is overly mechanical. It would be dangerous to assume, when operating on an intra-site level, a simple chronological difference between cairns based on elevation alone (see Kaliff 1997, 42; Feldt 2005, 103 f.). It is true that it might be equally dangerous to assume that this is not the case, but it should be noted here that the two radiocarbon samples that date the site to the Pre-Roman Iron Age, have been taken from cooking pits situated on a higher elevation than the cairns, and from these the other cooking pit was situated on a higher elevation than the other one. Although these samples have not been taken from the cairns, they are enough to cast doubt that temporal stratigraphy could be constructed on the site based solely on the cairns’ elevation above sea level.
So is the observed intra-site architecture at Viirikallio temporal or social? It is our view that a social reason seems more likely as this is supported by the evidence at hand – the radiocarbon dates from the cooking pits, the distinctive cairn covered with red sandstone slabs, the general morphology of the site, which is commonly associated with Pre-Roman Iron Age, and finally the results of the excavations of 2009 which revealed a burial structure that has its roots in the Pre-Roman Iron Age. At this time nothing seems to suggest that the Viirikallio cairns would contain significant temporal stratigraphy.

Discussion – cairn fields as means of social communication

To conclude, let us summarise the thoughts presented in this paper. Returning to the theoretical framework described in the introductory chapter, we now deal with Viirikallio as a large-scale social front of the people buried in the cairn field. We have discussed previously in this paper how the sites where the cairn fields were built, Viirikallio as a case in point, are economically and ideologically important places, and by how building lasting burial monuments on these sites is to communicate this importance. Based on this reasoning these places are social fronts on a community level as the builders want to be associated with the place. They take physical control of a space and ideologically lay claim to it. However, this is not the whole story as there are further levels of this communication which seem to relate rather to social communication within the group itself.

As discussed previously, it appears that even though the cairn fields might seem like a chaotic collection of cairns of various shapes and sizes, based on the example of Viirikallio, there is an inner structure to them and they are not randomly formed entities isolated from social factors. It appears likely that only a part of the population were buried in cairns to begin with, but furthermore in this group only some were awarded the position to be buried in certain kinds of cairns – the most obvious case being the cairns covered with, red sandstone slabs. Further differences seem to be obvious in the positive correlation with larger and smaller cairns, with larger cairns being situated generally on higher and more dominating positions than the smaller cairns, which often surround the larger cairns. This difference is unlikely to be solely caused by temporal stratification as discussed earlier in this paper. This suggests that within the group, who were granted cairn burial, there were those whose social position earned them a burial in a more prominent position in the cairn field. As these cairn fields were the social front of the community on a large scale, it now became a social front on a smaller scale – a part of the elite stratum was granted a better and more obvious position within the large scale social front. This means that within the elite stratum, distinction was at work and the elite itself was stratified – some members of the elite had a better social position and displayed it through a better position in the social front that the cairn field was.
Not only the effort in burial practices, but also the durability of the stone cairns is a reminder of the social status and the importance of the social group represented by the cairns. Relating a distinct part of the society with a sacred location is a strong claim for the group’s authority (Kertzer 1988, 13 f., 29, 38; DeMarrais et al. 1996, 15 ff.; Earle 1997, 144; Bayman 2002, 77 f.; Kuusela 2009). The construction of the cairns close to wetland and the coast, i.e. areas important for subsistence strategies and sources of “economic” capital, are a resource for symbolic capital for the social elite that can be used by the members of the elite to legitimize their position in the society. Viirikallio provides us with an example of the close connection between sacred spaces, subsistence, ideology and social status.

Acknowledgements

Both the Tyyni Tani fund and Thule Institute are thanked for their support without which the writing of this article would have been impossible. Archaeology students of Oulu University, Jouni Väänänen and Mikko Matikainen, are thanked for their help, patience and endurance during our mapping at Viirikallio in that cold week of April 2009. We are also grateful to the active and enthusiastic amateurs for their help and participation in the excavations of 2009. The two anonymous referees are acknowledged for their helpful comments.

References

Asplund, H. 2008. Kymittae. Sites, Centrality and Long-Term Settlement Change in the Kemiönsaari Region in SW Finland. (Series B Humaniora, 312.) University of Turku, Turku.

Lang, V. 2007. The Bronze and Early Iron Ages in Estonia. (Estonian Archaeology, 3.) Tartu University, Tartu.

