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Abstract. The notion of the transfer function of the discrete-time nonlinear control system is
defined. The definition is based on a non-commutative twisted polynomial ring, which can be
by the Ore condition extended into its quotient ring (field of fractions). Some properties of the
transfer function, related to accessibility and observability of the system, are studied and the
transfer functions of different composite systems (series, parallel, and feedback connections)
are given. The resulting theory is, in principle, similar to that in the linear case, except that
the polynomial description relates now the differentials of inputs and outputs, and the resulting
polynomial ring is non-commutative.
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1. INTRODUCTION

The transfer function plays an important role in the linear theory. In the linear
case the transfer function F (s) of a control system is usually expressed as the ratio
of two polynomials in the Laplace operator s with real coefficients. Alternatively,
in the polynomial systems theory [1], which has many features common with
the classical transfer function technique, a ring formed from polynomials in the
differentiation operator d/dt, interpreted as a linear mapping between signal spaces,
has been used to define the transfer function. The latter approach has been extended
to the nonlinear case to study problems like accessibility, irreducibility, and system
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reduction [2]. The resulting polynomial systems theory is in principle, similar to
the linear case. The main differences are as follows:
1. the ring of polynomials is now a non-commutative ring of twisted polynomials,

defined over the differential field of meromorphic functions in system variables,
2. the linear mapping is replaced by pseudo-linear mapping, and
3. the polynomial description relates the differentials of inputs and outputs and not

just inputs and outputs themselves.
However, this is in agreement with universal algebraic formalism, which is

based on the classification of differential one-forms associated with the nonlinear
control system, and has proved to be efficient for solving several modelling,
analysis, and design problems [3]. The approach is especially useful for checking
solvability conditions, but to find the solutions, differential one-forms have to be
integrated, which can be a difficult task. Of course, in this algebraic formalism,
unlike in the linear case, all computations must be done symbolically, which in
practice limits the complexity of the problems to be handled.

In papers [4−6], using the above polynomial approach, the transfer function
has been defined for continuous-time nonlinear systems and its properties have
been studied. The purpose of this paper is to show that the concept of the transfer
function can be extended to discrete-time nonlinear control systems. In the discrete-
time case the definition of the transfer function is based on a non-commutative
twisted polynomial ring, which is a special case of the skew polynomial ring and
can be embedded into its quotient field by the Ore condition. This skew polynomial
ring has been used earlier to study accessibility [7], input-output equivalence [8],
irreducibility, and reduction [9,10] for discrete-time nonlinear systems.

The paper is organized as follows. In Section 2 we review some of the
standard facts of the linear algebraic framework and the twisted polynomial ring,
associated with the discrete-time nonlinear control system. We also briefly sketch
the construction of the quotient field of twisted polynomials. In Section 3 we
introduce the notion of the transfer function of the discrete-time nonlinear system
and prove some of its properties. We demonstrate on examples how to calculate
the transfer functions both for single and composite systems. Finally, concluding
remarks are given in Section 4.

2. TWISTED POLYNOMIAL RING AND ITS QUOTIENT FIELD

In dealing with nonlinear control system properties, we are, similar to [3],
interested neither in local nor global, but in generic properties, i.e. in the properties
that hold almost everywhere, except on a set of measure zero. That is, we
look at ranks (or dimensions) over a field of functions, not over R. Hence,
there is no argument either about the points where to evaluate dimension or
about constant dimensionality of codistributions. Integrability of codistributions
is often characterized by conditions which require that specific functions of system
variables vanish. Since there are smooth functions that are neither generically zero
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nor generically different from zero, the notion of generic property does not make
sense, in general, for systems defined by smooth functions. However, the situation
is different if we restrict our attention to systems defined by means of analytic (or
also meromorphic) functions, and this motivates or choice.

A linear algebraic framework for the analysis of nonlinear discrete-time
systems was introduced in [11] and [12]. Consequently, the tools and methods
of the algebraic approach were applied to a number of control problems (see, for
example, [9,13,14]). In this paper we will follow the usual notations.

Consider the nonlinear discrete-time system described by a set of first-order
difference equations of the form

x(t + 1) = f(x(t), u(t)),
y(t) = g(x(t), u(t)),

(1)

where the entries of f and g are meromorphic functions, which we think of as
elements of the quotient field of the ring of analytic functions, and x(t) ∈ Rn,
u(t) ∈ Rm, and y(t) ∈ Rp denote, respectively, the state, the input, and the output
of the system.

Since in our paper we apply the algebraic formalism, based on differential one-
forms, associated with the control system, we emphasize that from this moment on,
instead of studying the system description in terms of difference equations (??), it
is sufficient to study the linearized system description in terms of differential one-
forms

dx(t + 1) = Adx(t) + Bdu(t),
dy(t) = Cdx(t) + Ddu(t),

(2)

which have been obtained by taking the total differentials of equations in (1) and
where A = ∂f/∂x, B = ∂f/∂u, C = ∂g/∂x, and D = ∂g/∂u. The advantage of
using one-forms lies in the fact that this allows extending the concept of the transfer
function to the nonlinear case in a manner that largely resembles the linear case.

Let K denote the field of meromorphic functions of {x(0), u(t); t ≥ 0}. The
field K can be endowed with a difference structure determined by system (1).
Hence, a forward-shift operator δ is defined as follows:

δϕ(x(0), u(0), . . . , u(N)) = ϕ(f(x(0), u(0)), u(1), . . . , u(N + 1)). (3)

It is important for δ to be an automorphism on K, in which case we think of (K, δ)
as a difference field. Therefore, system (1) has to be generically submersive, that is

rankK
∂f(·)

∂(x(t), u(t))
= n.

The submersivity assumption is not restrictive. First, it is the necessary condition
for accessibility, and second, in the case of shift-invariant systems it means that
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the backward shift operator can be applied a sufficient number of times. Under the
submersivity assumption, there exist, up to an isomorphism, a unique difference
field (K∗, δ∗), called the inversive closure of (K, δ). For an explicit construction of
the latter, see [12]. Here we assume that the inversive closure is given and by abuse
of notation we use the same notation (K, δ) for both.

Define a vector space of one-forms spanned overK by differentials of elements
of K, namely E = spanK{dξ; ξ ∈ K} . Any element in E is a vector of the form
v =

∑
i αidξi, where all αi ∈ K.

The operator δ : K → K induces a forward-shift operator δ : E → E by
δv =

∑
i(δαi)(δdξi), where v ∈ E .

Our aim is now to extend this algebraic point of view by introducing twisted
polynomials which would act as shift operators on the vector space E and to end
up with quotients of twisted polynomials which will enable us to define transfer
functions for nonlinear discrete-time systems. We basically follow [6], but this
time for discrete-time nonlinear systems.

The difference field K and the shift operator δ induce a polynomial ring K[δ]
with usual addition and non-commutative multiplication given by the commutation
rule

δ · ϕ = δ(ϕ) · δ. (4)

If the multiplication is defined in the above way, the non-commutative ring K[δ] is
called the twisted polynomial ring [15], and is proved to satisfy the Ore condition,
i.e. to be the Ore ring.

Remark 1. There exists an area of mathematics known as pseudo-linear algebra,
alternatively called Ore algebra, which deals with common properties of linear
differential and difference operators, see [16]. Basic objects of its study are
pseudo-derivations, skew polynomials, and pseudo-linear operators. In pseudo-
linear algebra the symbol δ conventionally denotes a pseudo-derivation and σ is
an injective endomorphism, which is the case of the shift operator, defined by (3).
To avoid confusion, we decided to keep the notation typical of papers dealing with
discrete-time nonlinear systems; that is, the symbol δ represents the forward-shift
operator.

2.1. Construction of the division ring of fractions

One common way of constructing fields is to take the field of fractions of an
integral domain, a process exactly like that of constructing the field of rational
numbers from the ring of integers. However, unlike in a commutative case, this
construction does not work for every non-commutative integral domain. The non-
commutative ring can be embedded into its quotient field (or field of fractions) if
the so-called Ore condition is satisfied.

Lemma 1 (Left Ore condition). For all nonzero a, b ∈ K[δ] there exist nonzero
a1, b1 ∈ K[δ] such that a1b = b1a, that is, a and b have a common left multiple.
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The ring K[δ] can, therefore, be embedded into a non-commutative quotient
field [17,18] by defining quotients as

a

b
= b−1 · a, (5)

where a, b ∈ K[δ] and b 6= 0. Addition is defined by reducing two quotients to the
same denominator

a1

b1
+

a2

b2
=

β2a1 + β1a2

β2b1
, (6)

where β2b1 = β1b2 by the Ore condition. Multiplication is defined by

a1

b1
· a2

b2
=

α1a2

β2b1
, (7)

where β2a1 = α1b2 again by the Ore condition. The resulting quotient field of
twisted polynomials is denoted by K〈δ〉.

3. TRANSFER FUNCTION OF THE NONLINEAR
DISCRETE-TIME SYSTEM

In Section 2 we associated with system of equations (1) its linearized system
of equations (2) in terms of one-forms. The same can be done with a higher-order
input-output difference equation,

ϕ(y(t + n), . . . , y(t), u(t + s), . . . , u(t)) = 0, (8)

obtained by eliminating the states from Eq. (1). By taking the total differential of
(8) we get

andy(t + n) + · · ·+ a0dy(t) = bsdu(t + s) + · · ·+ b0du(t)

or, alternatively,

(anδn + · · ·+ a0)dy(t) = (bsδ
s + · · ·+ b0)du(t), (9)

where ϕ ∈ K, ai = ∂ϕ/∂y(t + i), i = 0, . . . , n and bj = −∂ϕ/∂u(t + j),
j = 0, . . . , s.

Once we have defined the fraction of two polynomials, the transfer function can
be introduced.

Definition 1. An element F (δ) ∈ K〈δ〉 such that dy(t) = F (δ)du(t) is said to be
a transfer function of discrete-time nonlinear system (??) or (8), respectively.
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Now it follows from (9) that the transfer function of (8) (or (??)) is as follows:

F (δ) =
bsδ

s + · · ·+ b0

anδn + · · ·+ a0
. (10)

Remark 2. In the case of the multi-input multi-output system, we think of F (δ) as
a matrix with the entries in K〈δ〉, and F (δ) is then referred to as a transfer matrix.

In the linear time-invariant case, one can associate to each proper rational
function an input-output difference equation of a control system. However, things
are different in the nonlinear case. Though we can always associate with a proper
rational function F (δ) = a−1(δ) · b(δ) a corresponding input-output differential
form, ω = a(δ)dy(t)− b(δ)du(t), this one-form is not necessarily integrable. If
the input-output differential form is integrable, or can be made integrable by
multiplying an integrating factor, then there exists an input-output difference
equation of the form (8) such that the transfer function of this input-output equation
is F (δ). In other words, not every quotient of skew polynomials necessarily
represents a control system.

However, since the transfer function can be found from the system equations,
it directly implies that in such a case the condition of integrability is satisfied.

The transfer function can be alternatively calculated from the linearized state
equations (2). Rewrite first equation in (2) as

(δI −A)dx(t) = Bdu(t). (11)

Now, it follows from (2) that

F (δ) = C(δI −A)−1B + D. (12)

In spite of the formal similarity to transfer functions of linear discrete-time systems,
inverting matrix (δI − A) over the non-commutative field is now far from trivial,
since entries of (δI − A) are twisted polynomials. Inversion requires finding the
solutions of a set of linear equations over the non-commutative field (see [17]). To
compute the transfer function (12), one has to find the left-hand inverse of (δI−A).
One possibility is to use the classical Gauss–Jordan elimination algorithm, using
the definitions of addition and non-commutative multiplication, given, respectively,
by (6) and (7).

We now study some illustrative examples.

Example 1. Consider the system described by state equations

x1(t + 1) = x2(t) + u2(t),
x2(t + 1) = u(t),

y(t) = x1(t).
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The matrices A, B, and C in Eqs (2) are as follows:

A =
(

0 1
0 0

)
, B =

(
2u(t)

1

)
, C =

(
1 0

)

and the transfer function, computed according to (12), is

F (δ) =
(

1 0
)



1
δ

1
δ2

0
1
δ




(
2u(t)

1

)

=
2u(t)

δ
+

1
δ2

=
δ2u(t) + 1

δ2
=

2u(t + 1)δ + 1
δ2

.

Example 2. Consider the system described by state equations

x1(t + 1) = u(t),
x2(t + 1) = x3(t),
x3(t + 1) = x1(t) + u(t)x2(t),

y1(t) = x1(t),
y2(t) = x3(t).

Then

A =




0 0 0
0 0 1
1 u(t) 0


, B =




1
0

x2(t)


, C =

(
1 0 0
0 0 1

)

and the left-hand inverse of (δI −A) is

(δI −A)−1 =




1
δ

0 0

1
δ(δ2 − u(t))

δ

δ2 − u(t)
1

δ2 − u(t)
1

δ2 − u(t + 1)
u(t + 1)

δ2 − u(t + 1)
δ

δ2 − u(t + 1)




.

Since now we have the system with two outputs, we obtain the transfer matrix

F (δ) = C(δI −A)−1B =




1
δ

y2(t)δ + 1
δ2 − u(t + 1)


 . (13)
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However, it is much more easier to find the transfer function from the input-output
equations

y1(t + 1) = u(t),
y2(t + 1) = y2(t)u(t + 1) + u(t)

(14)

like in (10). By taking the total differential of (14), we obtain

dy1(t + 1) = du(t),
dy2(t + 1) = u(t + 1)dy2(t) + y2(t)du(t + 1) + du(t)

that yield immediately (see (9))

dy1(t) =
1
δ
du(t),

dy2(t) =
y2(t)δ + 1

δ2 − u(t + 1)
du(t).

(15)

3.1. Properties of the transfer function

The transfer function of the nonlinear discrete-time system satisfies many of the
properties we expect from the transfer function according to our linear intuition.

First, each nonlinear discrete-time system (1) has a unique transfer function, no
matter what state-space realization is used. To show this, we have, in fact, to prove
the following proposition.

Proposition 1. Transfer function (12) of nonlinear discrete-time system (1) is
invariant with respect to the state transformation ξ(t) = φ(x(t)).

Proof. For any state transformation ξ(t) = φ(x(t)) one has rankKT = n, where
T = (∂φ/∂x(t)). Since dξ(t) = Tdx(t), in the new coordinates we have

dξ(t + 1) = δ(T )AT−1dξ(t) + δ(T )Bdu(t),

dy(t) = CT−1dξ(t) + Ddu(t),
(16)

where δ(T ) means δ applied pointwise to T . Thus, the transfer function reads as

F (δ) = CT−1(δI − δ(T )AT−1)−1δ(T )B + D

= C(δ(T−1)δ · T −A)−1B + D.

After applying the commutation rule δ · T = δ(T ) · δ we get F (δ) =
C(δI −A)−1B + D, which completes the proof.
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Example 3. Consider the system described by state equations

x1(t + 1) = u(t),
x2(t + 1) = x1(t)u(t), (17)

y(t) =
x2(t)
x1(t)

.

From (17) we get

A =
(

0 0
u(t) 0

)
, B =

(
1

x1(t)

)
, C =

(
−x2(t)

x2
1(t)

1
x1(t)

)
.

The left-hand inverse of (δI −A) is

(δI −A)−1 =




1
δ

0

u(t + 1)
δ2

1
δ




and the transfer function

F (δ) = C(δI −A)−1B = −x2(t)
x2

1(t)
1
δ

+
1

x1(t)

(
u(t + 1)

δ2
+

x1(t)
δ

)

= −x1(t)
u(t)δ

+
1

x1(t)
u(t + 1) + u(t)δ

δ2
=

1
δ2

.

This result is not surprising if we notice that the input-output map of
system (17) is linear, y(t + 2) = u(t), and the state equations can be linearized
by the state transformation ξ1(t) = x2(t)/x1(t), ξ2(t) = x1(t).

Proposition 2. Suppose that the observable space O∞ of nonlinear discrete-time
system (1) is integrable. Then the transfer function describes only the accessible
and observable subsystem of the state equations (1).

Proof. Due to Proposition 1, the proof is quite straightforward. We begin by proving
that the transfer function describes only the accessible subsystem.

For any nonlinear discrete-time system (1) there exists the state transformation
ξ(t) = φ(x(t)) with respect to which (12) is invariant and which yields a
controllability canonical form given by

ξ1(t + 1) = f1(ξ1(t)),
ξ2(t + 1) = f2(ξ1(t), ξ2(t), u(t)), (18)

y(t) = g(ξ1(t), ξ2(t), u(t)),
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where the components of the vector ξ1(t) describe the so-called autonomous
elements. From above form (δI − A)−1B in (12) describes only the accessible
subsystem. Really, in case of form (18),

A =
(

A11 0
A21 A22

)
, B =

(
0

B2

)
,

where A11 = (∂f1/∂ξ1), A21 = (∂f2/∂ξ1), A22 = (∂f2/∂ξ2), and B2 =
(∂f2/∂u). Then

(δI −A)−1 =
(

(δI −A11)−1 0
. . . (δI −A22)−1

)

and thus (δI−A)−1B = (δI−A22)−1B2 describes only the accessible subsystem.
The same applies also to the observable subsystem. The observability canonical

form is given by

ξ1(t + 1) = f1(ξ1(t), u(t)),
ξ2(t + 1) = f2(ξ1(t), ξ2(t), u(t)),

y(t) = g(ξ1(t), u(t)),

where the vector ξ2(t) describes the unobservable states. This time, expression
C(δI −A)−1 in (12) describes only the observable subsystem. Really,

A =
(

A11 0
A21 A22

)
, C =

(
C1 0

)
,

where A11 = (∂f1/∂ξ1), A21 = (∂f2/∂ξ1), A22 = (∂f2/∂ξ2), and C1 =
(∂g/∂ξ1). Then

(δI −A)−1 =
(

(δI −A11)−1 0
. . . (δI −A22)−1

)

and thus C(δI − A)−1 = C1(δI − A11)−1 describes only the observable sub-
system.

Remark 3. Proposition 3 differs from its continuous-time counterpart [6], since
in the discrete-time case the observable space cannot always be locally spanned
by exact one-forms whose integrals would define the observable state coordinates
(see [13]). In this case, of course, one cannot talk about the observable subsystem.
In case of accessibility, we do not have this problem, since non-accessible subspace
H∞ is, like in the continuous-time case, always integrable.
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Example 4. Consider again the system described in Example 2, but now only with
its second output:

x1(t + 1) = u(t),
x2(t + 1) = x3(t),
x3(t + 1) = x1(t) + u(t)x2(t),

y(t) = x3(t).

The transfer function of this system, computed from the input-output equation, is

F (δ) =
y(t)δ + 1

δ2 − u(t + 1)
.

Since the denominator δ2 − u(t + 1) is a polynomial of degree 2 and the system is
of order 3, the system obviously is either not accessible or not observable.

In fact, this system is not observable. One can compute observability
filtration (see [13] for details) as O0 = spanK{dx3(t)} and O1 = spanK{dx3(t),
dx1(t) + u(t)dx2(t)} = O∞. Since O∞ is not integrable, we cannot find an
observability canonical form, and consequently, the system cannot be decomposed
into observable and unobservable subsystems.

Finally, we can also introduce for nonlinear systems an algebra of transfer
functions. Each system structure can be divided into three basic types of
connections: series, parallel, and feedback (see Fig. 1). For a series connection
it follows that dyB(t) = FB(δ)duB(t) = FB(δ)FA(δ)duA(t). Thus

F (δ) = FB(δ)FA(δ).

Fig. 1. Series (a), parallel (b), and feedback (c) connections of systems.
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For parallel and feedback connection we get

F (δ) = FA(δ) + FB(δ)

and

F (δ) = (1− FA(δ)FB(δ))−1 · FA(δ),

respectively.
The following example demonstrates how to handle a series connection of two

nonlinear systems.

Example 5. Consider two nonlinear discrete-time systems

yA(t + 1) + y2
A(t) = uA(t), yB(t + 2) = uB(t + 1) + u2

B(t).

Transfer functions of these two systems are as follows:

FA(δ) =
1

δ + 2yA(t)
, FB(δ) =

δ + 2uB(t)
δ2

.

The systems are now combined together in a series connection. For the connection
A → B the resulting transfer function is according to (7)

F (δ) = FB(δ)FA(δ) =
δ + 2uB(t)

δ2
· 1
δ + 2yA(t)

=
1
δ2

.

Therefore, the input-output map of the composite system is linear. However, when
the systems are connected as B → A, the resulting transfer function is

F (δ) = FA(δ)FB(δ) =
1

δ + 2yA(t)
· δ + 2uB(t)

δ2
=

δ + 2uB(t)
δ2(δ + 2yA(t))

,

which obviously does not result from the linear input-output map.

4. CONCLUSIONS

In this paper the notion of the transfer function of the discrete-time nonlinear
control system was defined and some of its properties were proved. The
resulting theory is, in principle, similar to that of the linear theory, except
that the polynomials defining the transfer function belong to a non-commutative
polynomial ring and the transfer function defines the relationship between the
differentials of inputs and outputs. Transfer functions are thus more difficult
to handle. We do hope, however, that the transfer function of the nonlinear
control system introduces a new alternative algebraic framework for the modelling,
analysis, and feedback design of nonlinear control systems.
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Diskreetsete mittelineaarsete juhtimissüsteemide
ülekandefunktsioonid

Miroslav Halás ja Ülle Kotta

On defineeritud diskreetse mittelineaarse juhtimissüsteemi ülekandefunkt-
siooni mõiste. Definitsioon põhineb teatud mittekommutatiivsete polünoomide
ringil, mida on võimalik Ore tingimuse täidetuse tõttu laiendada jagatiste ringiks.
On uuritud ülekandefunktsiooni omadusi, mis on seotud süsteemi juhitavuse ja
vaadeldavusega, ning näidatud, kuidas leida komposiitsüsteemide (järjestik- ja
paralleelühendus ning tagasisidestatud süsteem) ülekandefunktsiooni. Esitatud
tulemused on põhilises sarnased vastava lineaarse teooriaga, v.a see, et nüüd
ülekandefunktsiooniga määratud polünoomid seovad sisendite ja väljundite dife-
rentsiaale, mitte muutujaid endid, ning et vastav polünoomide ring on mitte-
kommutatiivne.
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