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Abstract. This study presents vapor pressure data for narrow boiling range 
fractions, viewed as pseudocomponents, prepared by rectification from a wide 
Kukersite oil shale retort oil gasoline fraction, a straight-run fraction with a 
boiling range from about 40 to about 200 °C. This technical gasoline fraction 
was produced in a commercial solid heat carrier retort. Vapor pressures were 
measured according to the ASTM D6378 standard with a commercial ERAVAP 
vapor pressure tester using a vapor-liquid ratio of 4:1. The vapor pressure 
curves were derived by fitting the experimental data using the integrated form 
of the Clausius-Clapeyron equation. From this equation heats of vaporization 
and atmospheric boiling points were calculated. The suitability of three easy-
to-use conventional oil vapor pressure correlations for predicting the vapor 
pressure of narrow boiling range fractions of Kukersite oil shale retort oil 
gasoline was evaluated.

Keywords: Kukersite oil shale, oil shale retort oil, gasoline fraction, 
pseudocomponents, vapor pressure, vapor pressure correlations.

1. Introduction

Vaporization properties are important to be taken into account in transporting, 
handling and storing liquid oil products or evaluating their environmental risks 
[1–3]. This information can be used in calculations for designing processes 
and equipment and in modelling the spread of oil in the environment. For 
conventional oils, vapor pressure correlations are available for predicting 
vapor pressures from the basic properties of oils [4–7]. However, there is less 
information available for alternative oils, including oils produced via retorting 
(or pyrolysis) from oil shales from various deposits [8–11]. Many of these 
alternative oils contain polar compounds, which can make prediction more 
difficult due to the increased complexity of the intermolecular interactions in 
these oils [12–17].
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In general, our literature review indicated that only a small amount of data 
existed on the thermodynamic and transport properties of oils produced via 
retorting from oil shales, especially for their narrow boiling range fractions 
[18, 19]. For example, Estonian Kukersite oil shale retort oil is one of the 
most extensively studied oils of this type [12, 20, 21], but only limited 
information can be found in the literature [18, 19, 22–24]. A recent literature 
review by Oja et al. [19] on the thermodynamic properties of Kukersite oil 
shale retort oil showed that the publicly available information was spotty and 
poorly suitable for evaluating the applicability of the existing thermodynamic 
property prediction methods, even for evaluating the simplest approaches 
based on “undefined” pseudocomponents [5, 6]. Concerning the vaporization 
characteristics of Kukersite oil shale retort oil, Kollerov [18] presented data 
on the vapor pressures at different vapor-liquid ratios, including for some 
samples in the boiling range of gasoline and diesel. Also, data for a few narrow 
boiling range gasoline fractions were provided by Siitsman and Oja [16, 25]. 
At the same time, the studies by Siitsman et al. [26] and Astra and Oja [27] 
were focused only on evaluating the applicability of a differential scanning 
calorimetry method to measuring the vapor pressures of complex mixtures 
such as narrow boiling range oil fractions, while no vapor pressure data for 
the Kukersite straight-run gasoline sample was presented. It should be noted 
that in practice, there are various techniques for measuring the vapor pressure 
of oil-like compounds and complex mixtures depending on the volatility of 
the sample [28–33]. In the current study, the vapor pressures of the gasoline 
samples (narrow boiling fractions with boiling points of about 60 to 130 oC) 
were measured according to the ASTM D6378-10 standard [34], using a 
commercial ERAVAP analyzer (Eralytics GmbH, Vienna, Austria).

The purpose of this study was to provide the vapor pressure data for the 
Kukersite gasoline narrow boiling range fractions (distillation cuts that can be 
viewed as pseudocomponents). This information can be used for calculations 
related to handling, storage and risk assessment. Also, the applicability of the 
existing petroleum based easy-to-use vapor pressure correlations for these 
Kukersite gasoline fractions was evaluated [6, 35–38]. Lighter (i.e. lower 
boiling) fractions of Kukersite oil are known to contain more olefins and 
aromatic hydrocarbons than those of conventional oils [12, 19].

2. Experimental and methods

2.1. Sample preparation

The Kukersite oil shale gasoline fraction, a wide straight-run fraction with 
a boiling range from about 40 to about 200 °C, was obtained from Eesti 
Energia’s Narva Oil Plant (Narva, Estonia). The plant uses solid heat carrier 
technology to convert oil shale organic matter into oil [39, 40]. In this 
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technology, pyrolysis vapors are fed from a retort to a distillation/separation 
column that separates oil into three broad industrial fractions: gasoline, fuel 
oil and heavy oil. The wide straight-run gasoline fraction used in the current 
study had a density of 0.7904 g/cm3 and a refractive index of 1.4445 at 20 °C. 
Literature-based elemental composition data show that usually up to 3% of 
the Kukersite straight-run gasoline fractions consist of heteroatoms, most of 
which are likely sulfur and oxygen compounds [12, 13].

The wide straight-run gasoline fraction was further separated into fractions 
with narrow boiling ranges using rectification in accordance with ASTM 
D2892 [41]. For rectification, a packed distillation column with 24 theoretical 
plates and a 6:1 reflux ratio was used. The rectification was largely by volume, 
collecting approximately 18 to 20 ml of sample. During sample collection, the 
vapors were condensed in a glass condenser at about –10 °C and the liquid 
gasoline was then collected in pre-cooled vials (to about –10 oC) to ensure no 
loss of volatiles.

2.2. Vapor pressure measurements and data analysis

Vapor pressure was measured according to ASTM D6378-10 [34] with said 
ERAVAP analyzer using a vapor-liquid ratio of 4:1. The instrument had 
a temperature range of 273–393 K and a pressure range from a few kPa to 
1000 kPa. Based on experience, the device was best suited for samples with 
vapor pressures between 10 and 150 kPa at 310.95 K. The accuracy of the 
measurements made with the apparatus was checked by measuring the vapor 
pressure of benzene between 40 and 90 oC and that of toluene between 60 
and 90 oC. The measured data together with selected reference data are given 
in Table 1 for benzene and in Table 2 for toluene. Based on this data (the 
difference between the measured and reference data points), the standard 
uncertainty of the vapor pressure measurements presented here was found to 
be better than 0.3 kPa.

Table 1. Accuracy of vapor pressure values of benzene (boiling point 80.1 °C) 
measured using the ERAVAP analyzer

T,
oC

P,
kPa

P1,
kPa

∆P1,
kPa

P2,
kPa

∆P2,
kPa

P3,
kPa

∆P3, 
kPa

P4,
kPa

∆P4, 
kPa

P5,
kPa

∆P5,
kPa

40.0 24.1 24.4 –0.3 24.4 –0.3 24.4 –0.3 24.4 –0.3 24.4 –0.3

50.0 36.2 36.2 0.0 36.2 0.0 36.2 0.0 36.2 0.0 36.2 0.0

60.0 52.3 52.2 0.1 52.2 0.1 52.2 0.1 52.2 0.1 52.2 0.1

70.0 73.4 73.4 0.0 73.5 –0.1 73.4 0.0 73.5 –0.1 73.4 0.0

80.0 100.9 101.0 –0.1 101.0 –0.1 101.0 –0.1 101.0 –0.1 101.0 –0.1

90.0 135.8 136.1 –0.3 136.1 –0.3 136.1 –0.3 136.1 –0.3 136.1 –0.3

Note: 1 is reference [42], 2 is reference [43], 3 is reference [44], 4 is reference [46], 5 is reference [47].
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Table 2. Accuracy of vapor pressure values of toluene (boiling point 110.6 °C) 
measured using the ERAVAP analyzer

T,
ºC

P,
kPa

P1,
kPa

∆P1,
kPa

P2,
kPa

∆P2,
kPa

P3,
kPa

∆P3,
kPa

P4,
kPa

∆P4,
kPa

60.0 18.6 18.5 0.1 18.5 0.1 18.5 0.1 18.5 0.1

70.0 27.4 27.2 0.2 27.2 0.2 27.2 0.2 27.2 0.2

80.0 39.1 38.8 0.3 38.8 0.3 38.8 0.3 38.8 0.3

90.0 54.1 54.2 –0.1 54.2 –0.1 54.2 –0.1 54.2 –0.1

Note: 1 is reference [42], 2 is reference [48], 3 is reference [44], 4 is reference [49].

Comparison of measured data with easy-to-use conventional oil vapor 
pressure correlations was performed using the root mean squared error 
(RMSE) and residual (a simple difference between predicted and measured 
values, r):
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where θp is the predicted value, θm is the measured value and n is the number 
of data points.

2.3. Determination of fraction properties

The characteristic properties of the fractions used in this study (density at 
20 oC, refractive index at 20 ° C, average boiling point, KW factor) are given 
in Table 3. The density at 20 oC was measured using a DMA 5000M density 
meter (Anton Paar GmbH, Graz, Austria). The instrument has a reproducibility 
of 0.00005 g/cm³. For gasoline samples, the standard uncertainty was found to 
be 0.00015 g/cm3. The refractive index at 20 °C was measured on an Abbemat 
HT refractometer (Anton Paar GmbH, Graz, Austria) at a wavelength of 
589.592 nm. For gasoline samples, the standard uncertainty was found to 
be 0.0011. The average boiling point of narrow boiling range fractions was 
determined as the arithmetic mean of the lower and upper temperature limits 
of the fraction collected during rectification (provided that the fraction had a 
Gaussian boiling point distribution), with a measurement uncertainty of 1 oC. 
For fraction 4 alone, the average boiling point was not calculated because, 
due to an experimental error in collecting this fraction, its initial boiling 
point was higher than the final boiling point. The KW factor, also called the 
Watson characterization factor or the Universal Oil Products Company (UOP) 
characterization factor, was calculated from measured density and average 
boiling point values according to the following equation:
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Table 3. Properties of narrow boiling gasoline fractions

Fraction Tav,
oC

ρ, 
g/cm3

RI KW

1 63 0.71033 1.4053 11.9

2 77 0.73005 1.4161 11.7

3 92 0.74776 1.4235 11.5

4 0.74978 1.4254 11.5*

5 89 0.74188 1.4210 11.6

6 99 0.76079 1.4299 11.5

7 108 0.78518 1.4420 11.2

8 115 0.76604 1.4314 11.5

9 119.5 0.76254 1.4298 11.6

10 123.5 0.77531 1.4359 11.4

11 130 0.79599 1.4466 11.2

12 137 0.80901 1.4524 11.1

Note: Tav – average boiling point, ρ – density at 20 °C, RI – refractive index at 20 oC, KW – Watson 
characterization factor.
* Indicative Kw value, calculated using the normal boiling point calculated from the integrated Clausius-
Clapeyron equation (integrated Clausius-Clapeyron equation  constants are reported in Table 5). 

           ,  (3)

where Tav is the fraction’s average boiling point, R, and S is the specific gravity 
at 60 °F. (However, in this study we used the density at 20 ° C, instead of  
15.5 °C, to calculate specific gravity because the corresponding error was 
judged to be insignificant in our calculations). For fraction 4, the indicative 
value of Kw was calculated using the normal boiling point (estimated through 
the integrated Clausius-Clapeyron equation, Eq. (4)). 

3. Results and discussion

3.1. Vapor pressure data

The experimental vapor pressure data for the twelve Kukersite oil shale retort 
oil narrow boiling range gasoline fractions is given in Table 4 and is shown 
graphically in Figure 1. The vapor pressures of all the fractions exhibited a 
linear trend on the ln(P) versus 1/T plot, and the R2 correlation coefficient 
values were greater than 0.9995 for all the samples. Therefore, the integrated 
form of the Clausius-Clapeyron equation (Eq. (4)) was used to fit the 
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experimental data of the fractions as follows:

             , (4)

where P is the vapor pressure, kPa; ΔHvap is the heat of vaporization, J mol–1; 
T is the temperature, K; A and B are fitting constants and R is the ideal gas 
constant (8.314 J mol–1 K–1). For each fraction the values of fitting constants 
A and B, together with the calculated heat of vaporization (from the fitting 
constant A) and atmospheric boiling point values (calculated at pressure  
101.3 kPa) are given in Table 5.

3.2. Evaluation of the applicability of prediction methods to oil shale 
gasoline

Various prediction methods, such as equations and graphs of varying degrees 
of complexity, have been developed to predict the vapor pressure of liquid 
fuels [5, 6]. In this study only easy-to-use methods, i.e. those based on 
conveniently measureable input parameters, were selected for evaluation. 
Correlations requiring critical temperature, critical pressure and acentric 
factor, i.e. parameters estimated by conventional oil-based empirical 
correlations, remained beyond consideration. The selected correlations were 
the following: a correlation from Van Nes and Van Westen [35], the Maxwell 
and Bonnell correlations [36, 37] and the modification to the Maxwell and 
Bonnell correlations presented by Tsonopoulos et al. [6] and Wilson et al. [38].

where Tb is the fraction’s average boiling point in °R and S is its specific gravity at 60 °F 
(however, in this study we used density at 20 ° C, instead of 15.5 °C, to calculate specific gravity  
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The correlation from Van Nes and Van Westen [35] is expressed by 
Equation (5) as follows: 
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Fig. 2. Deviation of predicted vapor pressure values from the experimental values 
(given as predicted value minus measured value).

Vapor pressures of narrow gasoline fractions of oil from industrial retorting of Kukersite oil shale



298 Parsa Mozaffari et al.

Fig. 3. Deviation of vapor pressure values predicted by the Maxwell and Bonnell 
correlations, from the experimental values, illustrated for all fractions at pressures up 
to 100 kPa.

Fig. 4. Deviation of vapor pressures predicted by the Maxwell and Bonnell equation 
from the experimental values, illustrated for selected fractions at pressures up to 500 
kPa. Experimental data-based residuals are shown as open points and extrapolated 
data-based residuals as solid points. (Abbreviations: meas – measured, extr –
extrapolated.)
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oil equations, the Maxwell and Bonnell correlations-based comparison 
is presented somewhat differently in Figures 3 and 4. Figure 3 shows the 
residuals, distinguishing each fraction specifically, up to a pressure of 100 
kPa. It can be seen from Figure 3 that the residues vary quite randomly by 
fraction, the behavior of fractions exhibiting random variation around the 
average deviation trend. At the same time, the predicted vapor pressure values 
have a deviation of ± 2.5 kPa, while the relative deviation at 50 kPa is less than 
5%. Some explanations for this, more like random variation, can be derived 
from the data in Table 3. Table 3, which contains characteristic data, shows 
that as the fraction number increases, there is no strictly monotonic increase 
in density or refractive index; rather, slight local minima and maxima can 
be seen in the generally increasing behavior with an increase in the initial 
boiling point. Assuming that the uncertainty associated with distillation is not 
so significant, this may indicate that the rectification results in the dominance 
of different classes of compounds among the boiling regions of the fractions. 
Figure 4 shows residuals for six selected fractions up to 500 kPa, displaying 
both experimental data-based residuals (open points) and extrapolated data-
based residues (solid points). The extrapolation beyond the measurement 
region is done here for illustrative purposes only. Again, the residuals vary 
quite randomly by fraction and the corresponding relative deviations of the 
predicted values fall below 5%.

In summary, the easy-to-use vapor pressure correlations, which were 
evaluated in this study, can be used to get reasonable estimates of the vapor 
pressure for these types of shale oil gasoline fractions and a choice between 
them could be merely a matter of convenience.

4. Conclusions

This article presented vapor pressure data for the narrow boiling fractions (or 
pseudocomponents) prepared by rectification from a wide technical gasoline 
fraction, which in turn was produced from Kukersite oil shale by using solid 
heat carrier retorting technology. Basic characteristics information (specific 
gravity, refractive index, average boiling point) was also measured for these 
fractions. It was found that the three examined easy-to-use correlations (which 
were based on conveniently measureable input parameters, either atmospheric 
boiling point or atmospheric boiling point and the characterization KW factor 
calculable on the basis of density and average boiling point) provided 
reasonable estimates of the vapor pressure of the gasoline fractions studied, 
while the choice between them could be merely a matter of convenience. In 
general, the performance of the different correlations was similar, although 
the Maxwell and Bonnell correlations were a little more accurate than the Van 
Nes and Van Westen correlation. The relative deviation of the predicted values 
was below 5% on average.

Vapor pressures of narrow gasoline fractions of oil from industrial retorting of Kukersite oil shale
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